C Programming Code Examples
C > Arrays and Matrices Code Examples
Program to Accept an Array & Swap Elements using Pointers
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/* Program to Accept an Array & Swap Elements using Pointers */
/* This C Program accepts array & swap elements using pointers. The program is used to swap the elements of a given array and swapping is done using pointers.
C program to accept an array of 10 elements and swap 3rd element
with 4th element using pointers and display the results. */
#include <stdio.h>
void swap34(float *ptr1, float *ptr2);
void main()
{
float x[10];
int j, n;
printf("How many Elements...\n");
scanf("%d", &n);
printf("Enter Elements one by one\n");
for (j = 0; j < n; j++)
{
scanf("%f", x + j);
}
/* Function call:Interchanging 3rd element by 4th */
swap34(x + 2, x + 3);
printf("\nResultant Array...\n");
for (j = 0; j < n; j++)
{
printf("X[%d] = %f\n", j, x[j]);
}
}
/* Function to swap the 3rd element with the 4th element in the array */
void swap34(float *ptr1, float *ptr2 )
{
float temp;
temp = *ptr1;
*ptr1 = *ptr2;
*ptr2 = temp;
}
scanf() Function in C
Read formatted data from stdin. Reads data from stdin and stores them according to the parameter format into the locations pointed by the additional arguments. The additional arguments should point to already allocated objects of the type specified by their corresponding format specifier within the format string.
In C programming, scanf() is one of the commonly used function to take input from the user. The scanf() function reads formatted input from the standard input such as keyboards. The scanf() function enables the programmer to accept formatted inputs to the application or production code. Moreover, by using this function, the users can provide dynamic input values to the application.
Syntax for scanf() Function in C
#include <stdio.h>
int scanf ( const char * format, ... );
format
C string that contains a sequence of characters that control how characters extracted from the stream are treated:
• Whitespace character: the function will read and ignore any whitespace characters encountered before the next non-whitespace character (whitespace characters include spaces, newline and tab characters -- see isspace). A single whitespace in the format string validates any quantity of whitespace characters extracted from the stream (including none).
• Non-whitespace character, except format specifier (%): Any character that is not either a whitespace character (blank, newline or tab) or part of a format specifier (which begin with a % character) causes the function to read the next character from the stream, compare it to this non-whitespace character and if it matches, it is discarded and the function continues with the next character of format. If the character does not match, the function fails, returning and leaving subsequent characters of the stream unread.
• Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format specifier, which is used to specify the type and format of the data to be retrieved from the stream and stored into the locations pointed by the additional arguments.
A format specifier for scanf follows this prototype:
%[*][width][length]specifier
specifier
Where the specifier character at the end is the most significant component, since it defines which characters are extracted, their interpretation and the type of its corresponding argument:
i – integer
Any number of digits, optionally preceded by a sign (+ or -). Decimal digits assumed by default (0-9), but a 0 prefix introduces octal digits (0-7), and 0x hexadecimal digits (0-f). Signed argument.
d or u – decimal integer
Any number of decimal digits (0-9), optionally preceded by a sign (+ or -).
d is for a signed argument, and u for an unsigned.
o – octal integer
Any number of octal digits (0-7), optionally preceded by a sign (+ or -). Unsigned argument.
x – hexadecimal integer
Any number of hexadecimal digits (0-9, a-f, A-F), optionally preceded by 0x or 0X, and all optionally preceded by a sign (+ or -). Unsigned argument.
f, e, g – floating point number
A series of decimal digits, optionally containing a decimal point, optionally preceeded by a sign (+ or -) and optionally followed by the e or E character and a decimal integer (or some of the other sequences supported by strtod). Implementations complying with C99 also support hexadecimal floating-point format when preceded by 0x or 0X.
c – character
The next character. If a width other than 1 is specified, the function reads exactly width characters and stores them in the successive locations of the array passed as argument. No null character is appended at the end.
s – string of characters
Any number of non-whitespace characters, stopping at the first whitespace character found. A terminating null character is automatically added at the end of the stored sequence.
p – pointer address
A sequence of characters representing a pointer. The particular format used depends on the system and library implementation, but it is the same as the one used to format %p in fprintf.
[characters] – scanset
Any number of the characters specified between the brackets.
A dash (-) that is not the first character may produce non-portable behavior in some library implementations.
[^characters] – negated scanset
Any number of characters none of them specified as characters between the brackets.
n – count
No input is consumed.
The number of characters read so far from stdin is stored in the pointed location.
%
A % followed by another % matches a single %.
Except for n, at least one character shall be consumed by any specifier. Otherwise the match fails, and the scan ends there.
sub-specifier
The format specifier can also contain sub-specifiers: asterisk (*), width and length (in that order), which are optional and follow these specifications:
*
An optional starting asterisk indicates that the data is to be read from the stream but ignored (i.e. it is not stored in the location pointed by an argument).
width
Specifies the maximum number of characters to be read in the current reading operation (optional).
length
One of hh, h, l, ll, j, z, t, L (optional). This alters the expected type of the storage pointed by the corresponding argument (see below).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a pointer to allocated storage where the interpretation of the extracted characters is stored with the appropriate type.
There should be at least as many of these arguments as the number of values stored by the format specifiers. Additional arguments are ignored by the function.
These arguments are expected to be pointers: to store the result of a scanf operation on a regular variable, its name should be preceded by the reference operator (&) (see example).
On success, the function returns the number of items of the argument list successfully filled. This count can match the expected number of items or be less (even zero) due to a matching failure, a reading error, or the reach of the end-of-file.
If a reading error happens or the end-of-file is reached while reading, the proper indicator is set (feof or ferror). And, if either happens before any data could be successfully read, EOF is returned.
If an encoding error happens interpreting wide characters, the function sets errno to EILSEQ.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/* read formatted data from stdin by scanf() function example */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, const char * argv[])
{
/* Define temporary variables */
char name[10];
int age;
int result;
/* Ask the user to enter their first name and age */
printf("Please enter your first name and your age.\n");
/* Read a name and age from the user */
result = scanf("%s %d",name, &age);
/* We were not able to parse the two required values */
if (result < 2)
{
/* Display an error and exit */
printf("Either name or age was not entered\n\n");
exit(0);
}
/* Display the values the user entered */
printf("Name: %s\n", name);
printf("Age: %d\n", age);
return 0;
}
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts.
main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined.
main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed.
Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main()
{
.........
// codes start from here
.........
}
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library.
• An operating system always calls the main() function when a programmers or users execute their programming code.
• It is responsible for starting and ends of the program.
• It is a universally accepted keyword in programming language and cannot change its meaning and name.
• A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program.
• A main() function is used to invoke the programming code at the run time, not at the compile time of a program.
• A main() function is followed by opening and closing parenthesis brackets.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* basic c program by main() function example */
#include <stdio.h>
#include <conio.h>
main()
{
printf (" It is a main() function ");
int fun2(); // jump to void fun1() function
printf ("\n Finally exit from the main() function. ");
}
void fun1()
{
printf (" It is a second function. ");
printf (" Exit from the void fun1() function. ");
}
int fun2()
{
void fun1(); // jump to the int fun1() function
printf (" It is a third function. ");
printf (" Exit from the int fun2() function. ");
return 0;
}
What is an Multi-Dimensional Array
An array is a collection of data items, all of the same type, accessed using a common name. A one-dimensional array is like a list; A two dimensional array is like a table; The C language places no limits on the number of dimensions in an array, though specific implementations may. Some texts refer to one-dimensional arrays as vectors, two-dimensional arrays as matrices, and use the general term arrays when the number of dimensions is unspecified or unimportant.
Declaring Two-Dimensional Arrays
An array of arrays is known as 2D array. The two dimensional (2D) array in C programming is also known as matrix. A matrix can be represented as a table of rows and columns. In C/C++, we can define multi dimensional arrays in simple words as array of arrays. Data in multi dimensional arrays are stored in tabular form (in row major order).
General form of declaring N-dimensional arrays is:
datatype arrayname[size1][size2]....[sizeN]; example: int 2d-array[8][16]; char letters[4][9]; float numbers[10][25];
Initializing Two-Dimensional Arrays
In the 1D array, we don't need to specify the size of the array if the declaration and initialization are being done simultaneously. However, this will not work with 2D arrays. We will have to define at least the second dimension of the array. The two-dimensional array can be declared and defined in the following way.
Multidimensional arrays may be initialized by specifying bracketed values for each row. Following is an array with 3 rows and each row has 4 columns.
int numbers[3][4] = {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11}};
Accessing Two-Dimensional Array Elements
Just like one-dimensional arrays, two-dimensional arrays also require indices to access the required elements. A row and a column index are needed to access a particular element; for nested loops, two indices (one to traverse the rows and the other to traverse the columns in each row) are required to print a two-dimensional array.
printf("%d ", numbers[4][8]); printf("'%s' has length %d\n", array[8][4], strlen(array[8][4]));
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* find the sum of two matrices of order 2*2 in C */
#include <stdio.h>
int main()
{
float a[2][2], b[2][2], result[2][2];
// Taking input using nested for loop
printf("Enter elements of 1st matrix\n");
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
{
printf("Enter a%d%d: ", i + 1, j + 1);
scanf("%f", &a[i][j]);
}
// Taking input using nested for loop
printf("Enter elements of 2nd matrix\n");
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
{
printf("Enter b%d%d: ", i + 1, j + 1);
scanf("%f", &b[i][j]);
}
// adding corresponding elements of two arrays
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
{
result[i][j] = a[i][j] + b[i][j];
}
// Displaying the sum
printf("\nSum Of Matrix:");
for (int i = 0; i < 2; ++i)
for (int j = 0; j < 2; ++j)
{
printf("%.1f\t", result[i][j]);
if (j == 1)
printf("\n");
}
return 0;
}
Pointers in C Language
Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with pointers, and other tasks, such as dynamic memory allocation, cannot be performed without using pointers. So it becomes necessary to learn pointers to become a perfect C programmer. Let's start learning them in simple and easy steps.
As you know, every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator, which denotes an address in memory. Consider the following example, which prints the address of the variables defined:
#include <stdio.h>
int main () {
int var1;
char var2[10];
printf("Address of var1 variable: %x\n", &var1 );
printf("Address of var2 variable: %x\n", &var2 );
return 0;
}
Syntax for Pointer variable declaration in C
type *var-name;
int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */
char *ch /* pointer to a character */
if(ptr) /* succeeds if p is not null */
if(!ptr) /* succeeds if p is null */
Advantage of Pointer
1) Pointer reduces the code and improves the performance, it is used to retrieving strings, trees, etc. and used with arrays, structures, and functions.
2) We can return multiple values from a function using the pointer.
3) It makes you able to access any memory location in the computer's memory.
Usage of Pointer
There are many applications of pointers in c language.
1) Dynamic memory allocation: In c language, we can dynamically allocate memory using malloc() and calloc() functions where the pointer is used.
2) Arrays, Functions, and Structures: Pointers in c language are widely used in arrays, functions, and structures. It reduces the code and improves the performance.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* working of pointers in C Language */
#include <stdio.h>
int main()
{
int* pc, c;
c = 22;
printf("Address of c: %p\n", &c);
printf("Value of c: %d\n\n", c); // 22
pc = &c;
printf("Address of pointer pc: %p\n", pc);
printf("Content of pointer pc: %d\n\n", *pc); // 22
c = 11;
printf("Address of pointer pc: %p\n", pc);
printf("Content of pointer pc: %d\n\n", *pc); // 11
*pc = 2;
printf("Address of c: %p\n", &c);
printf("Value of c: %d\n\n", c); // 2
return 0;
}
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include:
• Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions.
• User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */
// C program to illustrate file inclusion
// <> used to import system header file
#include <stdio.h>
// " " used to import user-defined file
#include "process.h"
// main function
int main()
{
// add function defined in process.h
add(10, 20);
// mult function defined in process.h
multiply(10, 20);
// printf defined in stdio.h
printf("Process completed");
return 0;
}
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement)
{
//Statements to be executed repeatedly
}
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* for loop statement in C language */
// Program to calculate the sum of first n natural numbers
// Positive integers 1,2,3...n are known as natural numbers
#include <stdio.h>
int main()
{
int num, count, sum = 0;
printf("Enter a positive integer: ");
scanf("%d", &num);
// for loop terminates when num is less than count
for(count = 1; count <= num; ++count)
{
sum += count;
}
printf("Sum = %d", sum);
return 0;
}
What is an Array in C Language
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number.
C array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations.
By using the array, we can access the elements easily. Only a few lines of code are required to access the elements of the array.
Properties of Array
The array contains the following properties.
• Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes.
• Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest memory location.
• Elements of the array can be randomly accessed since we can calculate the address of each element of the array with the given base address and the size of the data element.
Advantage of C Array
• 1) Code Optimization: Less code to the access the data.
• 2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily.
• 3) Ease of sorting: To sort the elements of the array, we need a few lines of code only.
• 4) Random Access: We can access any element randomly using the array.
Disadvantage of C Array
• 1) Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike a linked list, an array in C is not dynamic.
• 2) Insertion and deletion of elements can be costly since the elements are needed to be managed in accordance with the new memory allocation.
Declaration of C Array
To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows
type arrayName [ arraySize ];
double balance[10];
Initializing Arrays
You can initialize an array in C either one by one or using a single statement as follows
double balance[5] = {850, 3.0, 7.4, 7.0, 88};
double balance[] = {850, 3.0, 7.4, 7.0, 88};
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array.
double salary = balance[9];
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* arrays in C Language */
#include<stdio.h>
void main ()
{
int i, j,temp;
int a[10] = { 4, 8, 16, 120, 36, 44, 13, 88, 90, 23};
for(i = 0; i<10; i++)
{
for(j = i+1; j<10; j++)
{
if(a[j] > a[i])
{
temp = a[i];
a[i] = a[j];
a[j] = temp;
}
}
}
printf("Printing Sorted Element List ...\n");
for(i = 0; i<10; i++)
{
printf("%d\n",a[i]);
}
}
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers.
printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h>
int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout.
It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested.
A format specifier follows this prototype: [see compatibility note below]
%[flags][width][.precision][length]specifier
Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream.
The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0.
For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6).
For g and G specifiers: This is the maximum number of significant digits to be printed.
For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered.
If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n).
There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function.
If a writing error occurs, the error indicator (ferror) is set and a negative number is returned.
If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* print formatted data to stdout by printf() function example */
#include <stdio.h>
int main()
{
char ch;
char str[100];
int a;
float b;
printf("Enter any character \n");
scanf("%c", &ch);
printf("Entered character is %c \n", ch);
printf("Enter any string ( upto 100 character ) \n");
scanf("%s", &str);
printf("Entered string is %s \n", str);
printf("Enter integer and then a float: ");
// Taking multiple inputs
scanf("%d%f", &a, &b);
printf("You entered %d and %f", a, b);
return 0;
}
C program to 'count total number' of words in a string using Loop. To count total number of 'Words in a String' we just need to count total number of white spaces. Includes single blank
C programmers are required to swap values of two variables. Here, we shall learn how to swap values of 2 integer variables, that may lead to swapping of values of any type and...