Happy Codings - Programming Code Examples

C Programming Code Examples

C > Beginners Lab Assignments Code Examples

Visual Bubble Sort in C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* Visual Bubble Sort in C */ #include<stdio.h> #include<conio.h> #include<graphics.h> void object(int,int,int); void bubble(int); void flow(int,int); void mixing(int,int); int el[10]; void main() { int n,i,d=0,m=0; clrscr(); printf("Enter the No of Elements : " ); scanf("%d",&n); for(i=0;i<n;i++) { printf("Enter the %d Element : ",i+1); scanf("%d",&el[i]); } initgraph(&d,&m,""); settextstyle(3,0,1); outtextxy(250,50,"GIVEN NUMBERS "); // outtextxy(250,260," AFTER SORTING "); // line(0,getmaxy()/2,getmaxx(),getmaxy()/2); for(i=0;i<n;i++) { object(100+i*50,150,el[i]); getch(); } bubble(n); /* for(i=0;i<n;i++) { object(100+i*50,350,el[i]); getch(); }*/ getch(); } void bubble(int n) { int i,j,temp; for(i=0;i<n;i++) for(j=i;j<n-1;j++) if(el[i]>el[j+1]) { flow(i,j+1); temp=el[i]; el[i]=el[j+1]; el[j+1]=temp; } } void object(int x,int y,int no) { char s[8]; sprintf(s,"%d",no); circle(x,y,15); settextstyle(2,0,6); outtextxy(x-3,y-10,s); } void flow(int f,int s) { int i; for(i=0;i<50;i++) { setcolor(WHITE); object(100+f*50,150+i*4,el[f]); delay(15); setcolor(0); object(100+f*50,150+i*4,el[f]); } setcolor(WHITE); object(100+f*50,150+i*4,el[f]); for(i=0;i<50;i++) { setcolor(WHITE); object(100+s*50,150+i*4,el[s]); delay(10); setcolor(0); object(100+s*50,150+i*4,el[s]); } setcolor(WHITE); object(100+s*50,150+i*4,el[s]); mixing(f,s); for(i=50;i>0;i--) { setcolor(WHITE); object(100+f*50,150+i*4,el[s]); delay(10); setcolor(0); object(100+f*50,150+i*4,el[s]); } setcolor(WHITE); object(100+f*50,150+i*4,el[s]); for(i=50;i>0;i--) { setcolor(WHITE); object(100+s*50,150+i*4,el[f]); delay(15); setcolor(0); object(100+s*50,150+i*4,el[f]); } setcolor(WHITE); object(100+s*50,150+i*4,el[f]); } void mixing(int f,int s) { int i; for(i=0;i<(s-f)*50;i++) { setcolor(WHITE); object(100+f*50+i,350,el[f]); object(100+s*50-i,350,el[s]); delay(20); setcolor(0); object(100+f*50+i,350,el[f]); object(100+s*50-i,350,el[s]); } setcolor(WHITE); object(100+f*50+i,350,el[f]); object(100+s*50-i,350,el[s]); }
getmaxy() Function in C
The header file graphics.h contains getmaxy() function which returns the maximum Y coordinate for current graphics mode and driver. getmaxy returns the maximum (screen-relative) y value for the current graphics driver and mode. For example, on a CGA in 320*200 mode, getmaxy returns 199. getmaxy is invaluable for centering, determining the boundaries of a region onscreen, and so on.
Syntax for getmaxy() Function in C
#include <graphics.h> int getmaxy(void);
getmaxy() returns the maximum y screen coordinate. getmaxy() function is used to fetch the maximum Y coordinate for the current graphics mode or driver.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* get the maximum Y coordinate for current graphics mode and driver by getmaxy() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; char arr[100]; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // sprintf stands for "String print". // Instead of printing on console, it // store output on char buffer which // are specified in sprintf sprintf(arr, "Maximum Y coordinate for current " "graphics mode And driver = %d", getmaxy()); // outtext function displays text at // current position. outtext(arr); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
sprintf() Function in C
Write formatted data to string. Composes a string with the same text that would be printed if format was used on printf, but instead of being printed, the content is stored as a C string in the buffer pointed by str. The size of the buffer should be large enough to contain the entire resulting string (see snprintf for a safer version). A terminating null character is automatically appended after the content. After the format parameter, the function expects at least as many additional arguments as needed for format.
Syntax for sprintf() Function in C
#include <stdio.h> int sprintf ( char * str, const char * format, ... );
str
Pointer to a buffer where the resulting C-string is stored. The buffer should be large enough to contain the resulting string.
format
C string that contains a format string that follows the same specifications as format in printf (see printf for details).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function.
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
h
The argument is interpreted as a short int or unsigned short int (only applies to integer specifiers: i, d, o, u, x and X).
l
The argument is interpreted as a long int or unsigned long int for integer specifiers (i, d, o, u, x and X), and as a wide character or wide character string for specifiers c and s.
L
The argument is interpreted as a long double (only applies to floating point specifiers - e, E, f, g and G).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned. On success, the total number of characters written is returned. This count does not include the additional null-character automatically appended at the end of the string. On failure, a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* write formatted data to string by sprintf() function example */ #include<stdio.h> #include<string.h> int factorial(int ); int main() { int sal; char name[30], designation[30], info[60]; printf("Enter your name: "); gets(name); printf("Enter your designation: "); gets(designation); printf("Enter your salary: "); scanf("%d", &sal); sprintf(info, "Welcome %s !\nName: %s \nDesignation: %s\nSalary: %d", name, name, designation, sal); printf("\n%s", info); // signal to operating system program ran fine return 0; }
scanf() Function in C
Read formatted data from stdin. Reads data from stdin and stores them according to the parameter format into the locations pointed by the additional arguments. The additional arguments should point to already allocated objects of the type specified by their corresponding format specifier within the format string. In C programming, scanf() is one of the commonly used function to take input from the user. The scanf() function reads formatted input from the standard input such as keyboards. The scanf() function enables the programmer to accept formatted inputs to the application or production code. Moreover, by using this function, the users can provide dynamic input values to the application.
Syntax for scanf() Function in C
#include <stdio.h> int scanf ( const char * format, ... );
format
C string that contains a sequence of characters that control how characters extracted from the stream are treated: • Whitespace character: the function will read and ignore any whitespace characters encountered before the next non-whitespace character (whitespace characters include spaces, newline and tab characters -- see isspace). A single whitespace in the format string validates any quantity of whitespace characters extracted from the stream (including none). • Non-whitespace character, except format specifier (%): Any character that is not either a whitespace character (blank, newline or tab) or part of a format specifier (which begin with a % character) causes the function to read the next character from the stream, compare it to this non-whitespace character and if it matches, it is discarded and the function continues with the next character of format. If the character does not match, the function fails, returning and leaving subsequent characters of the stream unread. • Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format specifier, which is used to specify the type and format of the data to be retrieved from the stream and stored into the locations pointed by the additional arguments. A format specifier for scanf follows this prototype: %[*][width][length]specifier
specifier
Where the specifier character at the end is the most significant component, since it defines which characters are extracted, their interpretation and the type of its corresponding argument:
i – integer
Any number of digits, optionally preceded by a sign (+ or -). Decimal digits assumed by default (0-9), but a 0 prefix introduces octal digits (0-7), and 0x hexadecimal digits (0-f). Signed argument.
d or u – decimal integer
Any number of decimal digits (0-9), optionally preceded by a sign (+ or -). d is for a signed argument, and u for an unsigned.
o – octal integer
Any number of octal digits (0-7), optionally preceded by a sign (+ or -). Unsigned argument.
x – hexadecimal integer
Any number of hexadecimal digits (0-9, a-f, A-F), optionally preceded by 0x or 0X, and all optionally preceded by a sign (+ or -). Unsigned argument.
f, e, g – floating point number
A series of decimal digits, optionally containing a decimal point, optionally preceeded by a sign (+ or -) and optionally followed by the e or E character and a decimal integer (or some of the other sequences supported by strtod). Implementations complying with C99 also support hexadecimal floating-point format when preceded by 0x or 0X.
c – character
The next character. If a width other than 1 is specified, the function reads exactly width characters and stores them in the successive locations of the array passed as argument. No null character is appended at the end.
s – string of characters
Any number of non-whitespace characters, stopping at the first whitespace character found. A terminating null character is automatically added at the end of the stored sequence.
p – pointer address
A sequence of characters representing a pointer. The particular format used depends on the system and library implementation, but it is the same as the one used to format %p in fprintf.
[characters] – scanset
Any number of the characters specified between the brackets. A dash (-) that is not the first character may produce non-portable behavior in some library implementations.
[^characters] – negated scanset
Any number of characters none of them specified as characters between the brackets.
n – count
No input is consumed. The number of characters read so far from stdin is stored in the pointed location.
%
A % followed by another % matches a single %. Except for n, at least one character shall be consumed by any specifier. Otherwise the match fails, and the scan ends there.
sub-specifier
The format specifier can also contain sub-specifiers: asterisk (*), width and length (in that order), which are optional and follow these specifications:
*
An optional starting asterisk indicates that the data is to be read from the stream but ignored (i.e. it is not stored in the location pointed by an argument).
width
Specifies the maximum number of characters to be read in the current reading operation (optional).
length
One of hh, h, l, ll, j, z, t, L (optional). This alters the expected type of the storage pointed by the corresponding argument (see below).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a pointer to allocated storage where the interpretation of the extracted characters is stored with the appropriate type. There should be at least as many of these arguments as the number of values stored by the format specifiers. Additional arguments are ignored by the function. These arguments are expected to be pointers: to store the result of a scanf operation on a regular variable, its name should be preceded by the reference operator (&) (see example). On success, the function returns the number of items of the argument list successfully filled. This count can match the expected number of items or be less (even zero) due to a matching failure, a reading error, or the reach of the end-of-file. If a reading error happens or the end-of-file is reached while reading, the proper indicator is set (feof or ferror). And, if either happens before any data could be successfully read, EOF is returned. If an encoding error happens interpreting wide characters, the function sets errno to EILSEQ.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* read formatted data from stdin by scanf() function example */ #include <stdio.h> #include <stdlib.h> #include <string.h> int main(int argc, const char * argv[]) { /* Define temporary variables */ char name[10]; int age; int result; /* Ask the user to enter their first name and age */ printf("Please enter your first name and your age.\n"); /* Read a name and age from the user */ result = scanf("%s %d",name, &age); /* We were not able to parse the two required values */ if (result < 2) { /* Display an error and exit */ printf("Either name or age was not entered\n\n"); exit(0); } /* Display the values the user entered */ printf("Name: %s\n", name); printf("Age: %d\n", age); return 0; }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
getmaxx() Function in C
The header file graphics.h contains getmaxx() function which returns the maximum X coordinate for current graphics mode and driver. getmaxx() returns the maximum (screen-relative) x value for the current graphics driver and mode. For example, on a CGA in 320*200 mode, getmaxx returns 319. getmaxx is invaluable for centering, determining the boundaries of a region onscreen, and so on.
Syntax for getmaxx() Function in C
#include <graphics.h> int getmaxx(void);
getmaxx returns the maximum x screen coordinate. getmaxx() function is used to fetch the maximum X coordinate for the current graphics mode or driver.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* get the maximum X coordinate for current graphics mode and driver by getmaxx() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; char arr[100]; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // sprintf stands for "String print". // Instead of printing on console, it // store output on char buffer which // are specified in sprintf sprintf(arr, "Maximum X coordinate for current " "graphics mode And driver = %d", getmaxx()); // outtext function displays text at // current position. outtext(arr); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
delay() Function in C
Delay function is used to suspend execution of a program for a particular time. delay() function requires a parameter which should be a number, defining the milliseconds for the delay. To use delay function in your program you should include the "dos.h" header file which is not a part of standard C library. Here unsigned int is the number of milliseconds (remember 1 second = 1000 milliseconds).
Syntax for delay() Function in C
#include<stdio.h> void delay(unsigned int);
sleep() function requires a parameter which should be a number, defining the seconds to sleep. These functions are pretty useful when you want to show the user multiple outputs, for a given period of time. The nice thing about this is that we can also make alarm and reminder for the user in our program. Hence, these two functions are pretty handy, if you are planning to make a real-world application.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* suspend execution of a program for a particular time by delay() function example */ #include <stdio.h> //to use 'delay()' #include <dos.h> int main() { // message for user printf("After printing this message the program will get end in next 5 seconds \n"); // delay the process for 5 seconds as it takes integer value in milliseconds. delay(5000); // message for user. printf("After printing this message the program will get delay for next 15 seconds\n"); // to terminate the process for next 15 seconds. sleep(15); // message for user printf("After printing this message the program will get end in next 2 seconds \n"); // delay the process for 2 seconds as it takes integer value in milliseconds. delay(2000); return 0; }
clrscr() Function in C
Function clrscr() clears the screen and moves the cursor to the upper left-hand corner of the screen. If you are using the GCC compiler, use system function to execute the clear/cls command. clrscr() function is also a non-standard function defined in "conio.h" header. This function is used to clear the console screen. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.
Syntax to Clear the Console in C
#include<conio.h> clrscr(); OR system("cls"); OR system("clear");
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* clear the screen and moves the cursor to the upper left-hand corner of the screen by clrscr() function example. */ #include <stdio.h> // clrscr() function definition void clrscr(void) { system("clear"); } int main() { clrscr(); //clear output screen printf("Hello World!!!"); //print message return 0; }
line() Function in C
line() is a library function of graphics.c in c programming language which is used to draw a line from two coordinates. line() function is used to draw a line from a point(x1,y1) to point(x2,y2) i.e. (x1,y1) and (x2,y2) are end points of the line.
Syntax for line() Function in C
#include <graphics.h> void line(int x1, int y1, int x2, int y2);
x1
X coordinate of first point
y1
Y coordinate of first point.
x2
X coordinate of second point.
y2
Y coordinate of second point. This is a predefined function named line which is used to draw a line on the output screen. It takes 4 arguments, first two parameters represent an initial point and the last two arguments are for the final points of the line.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* draw a line from a point(x1,y1) to point(x2,y2) by line() function example */ /*C graphics program to draw a line.*/ #include <graphics.h> #include <conio.h> main() { int gd = DETECT, gm; //init graphics initgraph(&gd, &gm, "C:/TURBOC3/BGI"); /* if you are using turboc2 use below line to init graphics: initgraph(&gd, &gm, "C:/TC/BGI"); */ //draw a line /* line() function description parameter left to right x1: 100 y1: 100 x2: 200 y2: 100 */ line(100,100,200,100); //will draw a horizontal line line(10,10,200,10); //will draw another horizonatl line getch(); closegraph(); return 0; }
settextstyle() Function in C
Settextstyle function is used to change the way in which text appears, using it we can modify the size of text, change direction of text and change the font of text. settextstyle sets the text font, the direction in which text is displayed, and the size of the characters. A call to settextstyle affects all text output by outtext and outtextxy.
Syntax for settextstyle() Function in C
#include <graphics.h> void settextstyle(int font, int direction, int charsize);
font
One 8x8 bit-mapped font and several "stroked" fonts are available. The 8x8 bit-mapped font is the default. The enumeration font_names, which is defined in graphics.h, provides names for these different font settings: • DEFAULT_FONT – 0 8x8 bit-mapped font • TRIPLEX_FONT – 1 Stroked triplex font • SMALL_FONT – 2 Stroked small font • SANS_SERIF_FONT – 3 Stroked sans-serif font • GOTHIC_FONT – 4 Stroked gothic font • SCRIPT_FONT – 5 Stroked script font • SIMPLEX_FONT – 6 Stroked triplex script font • TRIPLEX_SCR_FONT – 7 Stroked triplex script font • COMPLEX_FONT – 8 Stroked complex font • EUROPEAN_FONT – 9 Stroked European font • BOLD_FONT – 10 Stroked bold font The default bit-mapped font is built into the graphics system. Stroked fonts are stored in *.CHR disk files, and only one at a time is kept in memory. Therefore, when you select a stroked font (different from the last selected stroked font), the corresponding *.CHR file must be loaded from disk. To avoid this loading when several stroked fonts are used, you can link font files into your program. Do this by converting them into object files with the BGIOBJ utility, then registering them through registerbgifont.
direction
Font directions supported are horizontal text (left to right) and vertical text (rotated 90 degrees counterclockwise). The default direction is HORIZ_DIR. The size of each character can be magnified using the charsize factor. If charsize is nonzero, it can affect bit-mapped or stroked characters. A charsize value of 0 can be used only with stroked fonts.
charsize
• If charsize equals 1, outtext and outtextxy displays characters from the 8x8 bit-mapped font in an 8x8 pixel rectangle onscreen. • If charsize equals 2, these output functions display characters from the 8x8 bit-mapped font in a 16*16 pixel rectangle, and so on (up to a limit of ten times the normal size). • When charsize equals 0, the output functions outtext and outtextxy magnify the stroked font text using either the default character magnification factor (4) or the user-defined character size given by setusercharsize. Always use textheight and textwidth to determine the actual dimensions of the text. This function needs to be called before the outtextxy() function, otherwise there will be no effect on text and output will be the same.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* set the text font, the direction in which text is displayed, and the size of the characters by settextstyle() function example. */ // C++ implementation for // settextstyle() function #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading // a graphics driver from disk initgraph(&gd, &gm, ""); // location of text int x = 150; int y = 150; // font style int font = 8; // font direction int direction = 0; // font size int font_size = 5; // for setting text style settextstyle(font, direction, font_size); // for printing text in graphics window outtextxy(x, y, "Happy Codings"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by graphics // system . closegraph(); return 0; }
initgraph() Function in C
initgraph initializes the graphics system by loading a graphics driver from disk (or validating a registered driver), and putting the system into graphics mode. To start the graphics system, first call the initgraph function. initgraph loads the graphics driver and puts the system into graphics mode. You can tell initgraph to use a particular graphics driver and mode, or to autodetect the attached video adapter at run time and pick the corresponding driver. If you tell initgraph to autodetect, it calls detectgraph to select a graphics driver and mode. initgraph also resets all graphics settings to their defaults (current position, palette, color, viewport, and so on) and resets graphresult to 0. Normally, initgraph loads a graphics driver by allocating memory for the driver (through _graphgetmem), then loading the appropriate .BGI file from disk. As an alternative to this dynamic loading scheme, you can link a graphics driver file (or several of them) directly into your executable program file.
Syntax for initgraph() Function in C
#include <graphics.h> void initgraph(int *graphdriver, int *graphmode, char *pathtodriver);
pathtodriver
pathtodriver specifies the directory path where initgraph looks for graphics drivers. initgraph first looks in the path specified in pathtodriver, then (if they are not there) in the current directory. Accordingly, if pathtodriver is null, the driver files (*.BGI) must be in the current directory. This is also the path settextstyle searches for the stroked character font files (*.CHR).
graphdriver
graphdriver is an integer that specifies the graphics driver to be used. You can give it a value using a constant of the graphics_drivers enumeration type, which is defined in graphics.h and listed below. • DETECT – 0 (requests autodetect) • CGA – 1 • MCGA – 2 • EGA – 3 • EGA64 – 4 • EGAMONO – 5 • IBM8514 – 6 • HERCMONO – 7 • ATT400 – 8 • VGA – 9 • PC3270 – 10
graphmode
graphmode is an integer that specifies the initial graphics mode (unless *graphdriver equals DETECT; in which case, *graphmode is set by initgraph to the highest resolution available for the detected driver). You can give *graphmode a value using a constant of the graphics_modes enumeration type, which is defined in graphics.h and listed below. initgraph always sets the internal error code; on success, it sets the code to 0. If an error occurred, *graphdriver is set to -2, -3, -4, or -5, and graphresult returns the same value as listed below: • grNotDetected: -2 Cannot detect a graphics card • grFileNotFound: -3 Cannot find driver file • grInvalidDriver: -4 Invalid driver • grNoLoadMem: -5 Insufficient memory to load driver
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* initgraph initializes the graphics system by loading a graphics driver by initgraph() function example*/ #include <graphics.h> #include <stdlib.h> #include <stdio.h> #include <conio.h> int main(void) { /* request auto detection */ int gdriver = DETECT, gmode, errorcode; /* initialize graphics mode */ initgraph(&gdriver, &gmode, ""); /* read result of initialization */ errorcode = graphresult(); if (errorcode != grOk) /* an error occurred */ { printf("Graphics error: %s\n", grapherrormsg(errorcode)); printf("Press any key to halt:"); getch(); exit(1); /* return with error code */ } /* draw a line */ line(0, 0, getmaxx(), getmaxy()); /* clean up */ getch(); closegraph(); return 0; }
circle() Function in C
This library function is declared in graphics.h and used to draw a circle; it takes centre point coordinates and radius. Circle function is used to draw a circle with center (x,y) and third parameter specifies the radius of the circle. The code given below draws a circle. Where, (x, y) is center of the circle. 'radius' is the Radius of the circle.
Syntax for circle() Function in C
#include <graphics.h> circle(x, y, radius);
x
X-coordinate of the circle
y
Y-coordinate of the circle
radius
radius of the circle This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* draw a circle with center at (x, y) and given radius by circle() function example. */ // C Implementation for drawing circle #include <graphics.h> //driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // circle function circle(250, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
outtextxy() Function in C
outtextxy displays a text string in the viewport at the given position (x, y), using the current justification settings and the current font, direction, and size. To maintain code compatibility when using several fonts, use textwidth and textheight to determine the dimensions of the string. If a string is printed with the default font using outtext or outtextxy, any part of the string that extends outside the current viewport is truncated. outtextxy is for use in graphics mode; it will not work in text mode.
Syntax for outtextxy() Function in C
#include <graphics.h> void outtextxy(int x, int y, char *textstring);
x
x-coordinate of the point
y
y-coordinate of the point
textstring
string to be displayed where, x, y are coordinates of the point and, third argument contains the address of string to be displayed. This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* display the text or string at a specified point (x, y) on the screen by outtextxy() function example */ // C Implementation for outtextxy() #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // outtextxy function outtextxy(200, 150, "Hello, Have a good day !"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
getch() Function in C
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* wait for any character input from keyboard by getch() function example. */ // C code to illustrate working of // getch() to accept hidden inputs #include <conio.h> #include <dos.h> // delay() #include <stdio.h> #include <string.h> void main() { // Taking the password of 8 characters char pwd[9]; int i; // To clear the screen clrscr(); printf("Enter Password: "); for (i = 0; i < 8; i++) { // Get the hidden input // using getch() method pwd[i] = getch(); // Print * to show that // a character is entered printf("*"); } pwd[i] = '\0'; printf("\n"); // Now the hidden input is stored in pwd[] // So any operation can be done on it // Here we are just printing printf("Entered password: "); for (i = 0; pwd[i] != '\0'; i++) printf("%c", pwd[i]); // Now the console will wait // for a key to be pressed getch(); }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
setcolor() Function in C
setcolor() function is used to set the foreground color in graphics mode. After resetting the foreground color you will get the text or any other shape which you want to draw in that color. setcolor sets the current drawing color to color, which can range from 0 to getmaxcolor. The current drawing color is the value to which pixels are set when lines, and so on are drawn. The drawing colors shown below are available for the CGA and EGA, respectively.
Syntax for setcolor() Function in C
#include <graphics.h> void setcolor(int color);
Each color is assigned a number. The possible color values are from 0 - 15: • BLACK – 0 • BLUE – 1 • GREEN – 2 • CYAN – 3 • RED – 4 • MAGENTA – 5 • BROWN – 6 • LIGHTGRAY – 7 • DARKGRAY – 8 • LIGHTBLUE – 9 • LIGHTGREEN – 10 • LIGHTCYAN – 11 • LIGHTRED – 12 • LIGHTMAGENTA – 13 • YELLOW – 14 • WHITE – 15 setcolor() functions contains only one argument that is color. It may be the color name enumerated in graphics.h header file or number assigned with that color.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* set the current drawing color to color, which can range from 0 to getmaxcolor by setcolor() function example */ // C Implementation for setcolor() #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm, color; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // Draws circle in white color // center at (100, 100) and radius // as 50 circle(100, 100, 50); // setcolor function setcolor(GREEN); // Draws circle in green color // center at (200, 200) and radius // as 50 circle(200, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement) { //Statements to be executed repeatedly }
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* for loop statement in C language */ // Program to calculate the sum of first n natural numbers // Positive integers 1,2,3...n are known as natural numbers #include <stdio.h> int main() { int num, count, sum = 0; printf("Enter a positive integer: "); scanf("%d", &num); // for loop terminates when num is less than count for(count = 1; count <= num; ++count) { sum += count; } printf("Sum = %d", sum); return 0; }


The LCM of two integers num1 and num2 is the smallest positive integer that is perfectly divisible by both num1 and num2 (without a remainder). For example: the LCM of 72 and
C Language check if a number is positive or negative using nested if...else. This program takes a number from user & checks whether that number is either positive or negative or
C Program code to input side of a Triangle & check whether triangle is valid or not using if else. A triangle is valid if sum of its two sides is greater than the third side. Means if a, b, c