Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C Programming Code Examples

C > Code Snippets Code Examples

allocates sufficient memory for an array of num objects of size size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* allocates sufficient memory for an array of num objects of size size */ //Declaration: void *calloc(size_t num, size_t size); //Return: returns a pointer to the first byte of the allocated region. #include <stdlib.h> #include <stdio.h> int main(void){ float *j; j = calloc(100, sizeof(float)); if(!j) { printf("Allocation Error\n"); exit(1); } }
Logical Operators in C
An expression containing logical operator returns either 0 or 1 depending upon whether expression results true or false. Logical operators are commonly used in decision making in C programming. These operators are used to perform logical operations and used with conditional statements like C if-else statements.
&&
Called Logical AND operator. If both the operands are non-zero, then the condition becomes true.
||
Called Logical OR Operator. If any of the two operands is non-zero, then the condition becomes true.
!
Called Logical NOT Operator. It is used to reverse the logical state of its operand. If a condition is true, then Logical NOT operator will make it false.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* logical operators in C language */ #include <stdio.h> main() { int a = 4; int b = 23; int c ; if ( a && b ) { printf("Line 1 - Condition is true\n" ); } if ( a || b ) { printf("Line 2 - Condition is true\n" ); } /* lets change the value of a and b */ a = 2; b = 8; if ( a && b ) { printf("Line 3 - Condition is true\n" ); } else { printf("Line 3 - Condition is not true\n" ); } if ( !(a && b) ) { printf("Line 4 - Condition is true\n" ); } }
exit() Function in C
The exit() function is used to terminate a process or function calling immediately in the program. It means any open file or function belonging to the process is closed immediately as the exit() function occurred in the program. The exit() function is the standard library function of the C, which is defined in the stdlib.h header file. So, we can say it is the function that forcefully terminates the current program and transfers the control to the operating system to exit the program. The exit(0) function determines the program terminates without any error message, and then the exit(1) function determines the program forcefully terminates the execution process.
Syntax for exit() Function in C
#include <stdlib.h> void exit(int status)
status
Status code. If this is 0 or EXIT_SUCCESS, it indicates success. If it is EXIT_FAILURE, it indicates failure. The exit function does not return anything. • We must include the stdlib.h header file while using the exit () function. • It is used to terminate the normal execution of the program while encountered the exit () function. • The exit () function calls the registered atexit() function in the reverse order of their registration. • We can use the exit() function to flush or clean all open stream data like read or write with unwritten buffered data. • It closed all opened files linked with a parent or another function or file and can remove all files created by the tmpfile function. • The program's behaviour is undefined if the user calls the exit function more than one time or calls the exit and quick_exit function. • The exit function is categorized into two parts: exit(0) and exit(1).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* call all functions registered with atexit and terminates the program by exit() function example */ #include <stdio.h> #include <stdlib.h> int main () { // declaration of the variables int i, num; printf ( " Enter the last number: "); scanf ( " %d", &num); for ( i = 1; i<num; i++) { // use if statement to check the condition if ( i == 6 ) /* use exit () statement with passing 0 argument to show termination of the program without any error message. */ exit(0); else printf (" \n Number is %d", i); } return 0; }
sizeof() Operator in C
The sizeof() operator is commonly used in C. It determines the size of the expression or the data type specified in the number of char-sized storage units. The sizeof() operator contains a single operand which can be either an expression or a data typecast where the cast is data type enclosed within parenthesis. The data type cannot only be primitive data types such as integer or floating data types, but it can also be pointer data types and compound data types such as unions and structs.
Syntax for sizeof() Operator in C
#include <stdio.h> sizeof (data type)
data type
Where data type is the desired data type including classes, structures, unions and any other user defined data type. Mainly, programs know the storage size of the primitive data types. Though the storage size of the data type is constant, it varies when implemented in different platforms. For example, we dynamically allocate the array space by using sizeof() operator:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* return the size of a variable by sizeof() operator example */ int main( int argc, char* argv[] ) { printf("sizeof(char) = %d\n", sizeof(char) ); printf("sizeof(short) = %d\n", sizeof(short) ); printf("sizeof(int) = %d\n", sizeof(int) ); printf("sizeof(long) = %d\n", sizeof(long) ); printf("sizeof(long long) = %d\n", sizeof(long long) ); printf("\n"); printf("sizeof(unsigned char) = %d\n", sizeof(unsigned char) ); printf("sizeof(unsigned short) = %d\n", sizeof(unsigned short) ); printf("sizeof(unsigned int) = %d\n", sizeof(unsigned int) ); printf("sizeof(unsigned long) = %d\n", sizeof(unsigned long) ); printf("\n"); printf("sizeof(float) = %d\n", sizeof(float) ); printf("sizeof(double) = %d\n", sizeof(double) ); printf("sizeof(long double) = %d\n", sizeof(long double) ); printf("\n"); int x; printf("sizeof(x) = %d\n", sizeof(x) ); }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
calloc() Function in C
Allocate and zero-initialize array. Allocates a block of memory for an array of num elements, each of them size bytes long, and initializes all its bits to zero. The effective result is the allocation of a zero-initialized memory block of (num*size) bytes. If size is zero, the return value depends on the particular library implementation (it may or may not be a null pointer), but the returned pointer shall not be dereferenced. The calloc() in C is a function used to allocate multiple blocks of memory having the same size. It is a dynamic memory allocation function that allocates the memory space to complex data structures such as arrays and structures and returns a void pointer to the memory. Calloc stands for contiguous allocation. Malloc function is used to allocate a single block of memory space while the calloc function in C is used to allocate multiple blocks of memory space. Each block allocated by the calloc in C programming is of the same size.
Syntax for calloc() Function in C
#include <stdio.h> void* calloc (size_t num, size_t size);
num
Number of elements to allocate.
size
Size of each element. size_t is an unsigned integral type. On success, function returns a pointer to the memory block allocated by the function. The type of this pointer is always void*, which can be cast to the desired type of data pointer in order to be dereferenceable. If the function failed to allocate the requested block of memory, a null pointer is returned.
Data races
Only the storage referenced by the returned pointer is modified. No other storage locations are accessed by the call. If the function reuses the same unit of storage released by a deallocation function (such as free or realloc), the functions are synchronized in such a way that the deallocation happens entirely before the next allocation.
Exceptions
No-throw guarantee. This function never throws exceptions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* allocate and zero-initialize array by calloc() function example */ #include <stdio.h> #include <conio.h> #include <stdlib.h> void main() { int n, *ptr, *p, i, sum = 0; /* n = number of elements, *ptr = store base address of the dynamic memory, *p store temporary address of the *ptr */ printf (" Enter the number of elements: "); scanf (" %d", &n); // it takes number of elements // use calloc syntax to create memory block of int data type ptr = (int *) calloc (n, sizeof(int)); p = ptr; // assign the address of ptr if (ptr == NULL) // it checks whether the memory is allocated { printf (" Memory is not allocated. "); exit(0); // exit from the program } printf (" Enter %d numbers \n", n); for ( i = 1; i <= n; i++) { scanf ( "%d", ptr); sum = sum + *ptr; ptr++; } printf (" Elements are: "); for (i = 1; i <= n; i++) { printf (" %d", *p); p++; } printf (" \n The addition of the elements is: %d ", sum); getch(); }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
Pointers in C Language
Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with pointers, and other tasks, such as dynamic memory allocation, cannot be performed without using pointers. So it becomes necessary to learn pointers to become a perfect C programmer. Let's start learning them in simple and easy steps. As you know, every variable is a memory location and every memory location has its address defined which can be accessed using ampersand (&) operator, which denotes an address in memory. Consider the following example, which prints the address of the variables defined:
#include <stdio.h> int main () { int var1; char var2[10]; printf("Address of var1 variable: %x\n", &var1 ); printf("Address of var2 variable: %x\n", &var2 ); return 0; }
A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory location. Like any variable or constant, you must declare a pointer before using it to store any variable address. The general form of a pointer variable declaration is:
Syntax for Pointer variable declaration in C
type *var-name;
Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the pointer variable. The asterisk * used to declare a pointer is the same asterisk used for multiplication. However, in this statement the asterisk is being used to designate a variable as a pointer. Take a look at some of the valid pointer declaration:
int *ip; /* pointer to an integer */ double *dp; /* pointer to a double */ float *fp; /* pointer to a float */ char *ch /* pointer to a character */
The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. The only difference between pointers of different data types is the data type of the variable or constant that the pointer points to. There are a few important operations, which we will do with the help of pointers very frequently. (a) We define a pointer variable, (b) assign the address of a variable to a pointer and (c) finally access the value at the address available in the pointer variable. This is done by using unary operator * that returns the value of the variable located at the address specified by its operand. NULL Pointers: It is always a good practice to assign a NULL value to a pointer variable in case you do not have an exact address to be assigned. This is done at the time of variable declaration. A pointer that is assigned NULL is called a null pointer. The NULL pointer is a constant with a value of zero defined in several standard libraries. In most of the operating systems, programs are not permitted to access memory at address 0 because that memory is reserved by the operating system. However, the memory address 0 has special significance; it signals that the pointer is not intended to point to an accessible memory location. But by convention, if a pointer contains the null (zero) value, it is assumed to point to nothing. To check for a null pointer, you can use an 'if' statement as follows:
if(ptr) /* succeeds if p is not null */ if(!ptr) /* succeeds if p is null */
Pointer arithmetic: There are four arithmetic operators that can be used in pointers: ++, --, +, - Array of pointers: You can define arrays to hold a number of pointers. Pointer to pointer: C allows you to have pointer on a pointer and so on. Passing pointers to functions in C: Passing an argument by reference or by address enable the passed argument to be changed in the calling function by the called function. Return pointer from functions in C: C allows a function to return a pointer to the local variable, static variable, and dynamically allocated memory as well.
Advantage of Pointer
1) Pointer reduces the code and improves the performance, it is used to retrieving strings, trees, etc. and used with arrays, structures, and functions. 2) We can return multiple values from a function using the pointer. 3) It makes you able to access any memory location in the computer's memory.
Usage of Pointer
There are many applications of pointers in c language. 1) Dynamic memory allocation: In c language, we can dynamically allocate memory using malloc() and calloc() functions where the pointer is used. 2) Arrays, Functions, and Structures: Pointers in c language are widely used in arrays, functions, and structures. It reduces the code and improves the performance.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* working of pointers in C Language */ #include <stdio.h> int main() { int* pc, c; c = 22; printf("Address of c: %p\n", &c); printf("Value of c: %d\n\n", c); // 22 pc = &c; printf("Address of pointer pc: %p\n", pc); printf("Content of pointer pc: %d\n\n", *pc); // 22 c = 11; printf("Address of pointer pc: %p\n", pc); printf("Content of pointer pc: %d\n\n", *pc); // 11 *pc = 2; printf("Address of c: %p\n", &c); printf("Value of c: %d\n\n", c); // 2 return 0; }
What is an Array in C Language
An array is defined as the collection of similar type of data items stored at contiguous memory locations. Arrays are the derived data type in C programming language which can store the primitive type of data such as int, char, double, float, etc. It also has the capability to store the collection of derived data types, such as pointers, structure, etc. The array is the simplest data structure where each data element can be randomly accessed by using its index number. C array is beneficial if you have to store similar elements. For example, if we want to store the marks of a student in 6 subjects, then we don't need to define different variables for the marks in the different subject. Instead of that, we can define an array which can store the marks in each subject at the contiguous memory locations. By using the array, we can access the elements easily. Only a few lines of code are required to access the elements of the array.
Properties of Array
The array contains the following properties. • Each element of an array is of same data type and carries the same size, i.e., int = 4 bytes. • Elements of the array are stored at contiguous memory locations where the first element is stored at the smallest memory location. • Elements of the array can be randomly accessed since we can calculate the address of each element of the array with the given base address and the size of the data element.
Advantage of C Array
• 1) Code Optimization: Less code to the access the data. • 2) Ease of traversing: By using the for loop, we can retrieve the elements of an array easily. • 3) Ease of sorting: To sort the elements of the array, we need a few lines of code only. • 4) Random Access: We can access any element randomly using the array.
Disadvantage of C Array
• 1) Allows a fixed number of elements to be entered which is decided at the time of declaration. Unlike a linked list, an array in C is not dynamic. • 2) Insertion and deletion of elements can be costly since the elements are needed to be managed in accordance with the new memory allocation.
Declaration of C Array
To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows
type arrayName [ arraySize ];
This is called a single-dimensional array. The arraySize must be an integer constant greater than zero and type can be any valid C data type. For example, to declare a 10-element array called balance of type double, use this statement
double balance[10];
Here balance is a variable array which is sufficient to hold up to 10 double numbers.
Initializing Arrays
You can initialize an array in C either one by one or using a single statement as follows
double balance[5] = {850, 3.0, 7.4, 7.0, 88};
The number of values between braces { } cannot be larger than the number of elements that we declare for the array between square brackets [ ]. If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write
double balance[] = {850, 3.0, 7.4, 7.0, 88};
Accessing Array Elements
An element is accessed by indexing the array name. This is done by placing the index of the element within square brackets after the name of the array.
double salary = balance[9];
The above statement will take the 10th element from the array and assign the value to salary variable.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* arrays in C Language */ #include<stdio.h> void main () { int i, j,temp; int a[10] = { 4, 8, 16, 120, 36, 44, 13, 88, 90, 23}; for(i = 0; i<10; i++) { for(j = i+1; j<10; j++) { if(a[j] > a[i]) { temp = a[i]; a[i] = a[j]; a[j] = temp; } } } printf("Printing Sorted Element List ...\n"); for(i = 0; i<10; i++) { printf("%d\n",a[i]); } }


In C Coding, the string entered by the user is stored in variable str. Then, the user is asked to enter the character whose frequency is to be found. This is stored in variable ch. Now,
C Programming Code to input two numbers from user and find their power using pow() function. How to find power of a number in c. How to use pow() function in C programming.
C Programming code input principle amount. Store it in some variable say principle. Input time in some variable say time. Input rate in some variable say rate. Calculate compound
C program input two numbers and perform all arithmetic operations. How to perform all arithmetic operation between two numbers in C programming. C program to find sum,...