C Programming Code Examples
C > For Loops and While Loops Code Examples
C program to convert Octal to Hexadecimal number system
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* C program to convert Octal to Hexadecimal number system
Write a C program to input octal number from user and convert to hexadecimal number system. How to convert from octal number system to hexadecimal number system in C program.
Octal number system
Octal number system is a base 8 number system. It uses 8 symbols to represent all its numbers i.e. 01234567
Hexadecimal number system
Hexadecimal number system is a base 16 number system. It uses 16 symbols to represent all its numbers i.e. 0123456789ABCDEF
There is no direct conversion from octal to hexadecimal number system. You first need to convert the given octal to binary number system. Then binary number system is converted to hexadecimal number system.
Convert the given octal number to binary number system.
Extract binary bits in a group of 4 bit starting from right side.
Write the corresponding hexadecimal of extracted 4 binary bits.
Binary to Hexadecimal conversion table
Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F */
#include <stdio.h>
int main()
{
int OCTALVALUES[] = {0, 1, 110, 11, 1010, 1001, 110, 1111};
long long octal, tempOctal, binary, place;
char hex[65] = "";
int rem;
place = 1;
binary = 0;
/* Input octal number from user */
printf("Enter any octal number: ");
scanf("%lld", &octal);
tempOctal = octal;
/* Octal to binary conversion */
while(tempOctal > 0)
{
rem = tempOctal % 10;
binary = (OCTALVALUES[rem] * place) + binary;
tempOctal /= 10;
place *= 1000;
}
/* Binary to hexadecimal conversion */
while(binary > 0)
{
rem = binary % 10000;
switch(rem)
{
case 0:
strcat(hex, "0");
break;
case 1:
strcat(hex, "1");
break;
case 10:
strcat(hex, "2");
break;
case 11:
strcat(hex, "3");
break;
case 100:
strcat(hex, "4");
break;
case 101:
strcat(hex, "5");
break;
case 110:
strcat(hex, "6");
break;
case 111:
strcat(hex, "7");
break;
case 1000:
strcat(hex, "8");
break;
case 1001:
strcat(hex, "9");
break;
case 1010:
strcat(hex, "A");
break;
case 1011:
strcat(hex, "B");
break;
case 1100:
strcat(hex, "C");
break;
case 1101:
strcat(hex, "D");
break;
case 1110:
strcat(hex, "E");
break;
case 1111:
strcat(hex, "F");
break;
}
binary /= 10000;
}
strrev(hex);
printf("Octal number: %lld\n", octal);
printf("Hexadecimal number: %s", hex);
return 0;
}
Assignment Operators in C
Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/* assignment operators in C language */
#include <stdio.h>
main() {
int a = 23;
int c ;
c = a;
printf("Line 1 - = Operator Example, Value of c = %d\n", c );
c += a;
printf("Line 2 - += Operator Example, Value of c = %d\n", c );
c -= a;
printf("Line 3 - -= Operator Example, Value of c = %d\n", c );
c *= a;
printf("Line 4 - *= Operator Example, Value of c = %d\n", c );
c /= a;
printf("Line 5 - /= Operator Example, Value of c = %d\n", c );
c = 120;
c %= a;
printf("Line 6 - %= Operator Example, Value of c = %d\n", c );
c <<= 2;
printf("Line 7 - <<= Operator Example, Value of c = %d\n", c );
c >>= 2;
printf("Line 8 - >>= Operator Example, Value of c = %d\n", c );
c &= 2;
printf("Line 9 - &= Operator Example, Value of c = %d\n", c );
c ^= 2;
printf("Line 10 - ^= Operator Example, Value of c = %d\n", c );
c |= 2;
printf("Line 11 - |= Operator Example, Value of c = %d\n", c );
}
Relational Operators in C
Relational Operators are the operators used to create a relationship and compare the values of two operands. For example, there are two numbers, 5 and 15, and we can get the greatest number using the greater than operator (>) that returns 15 as the greatest or larger number to the 5. Following are the various types of relational operators in C.
==
Equal To Operator (==) is used to compare both operands and returns 1 if both are equal or the same, and 0 represents the operands that are not equal.
!=
Not Equal To Operator (!=) is the opposite of the Equal To Operator and is represented as the (!=) operator. The Not Equal To Operator compares two operands and returns 1 if both operands are not the same; otherwise, it returns 0.
<
Less than Operator (<) is used to check whether the value of the left operand is less than the right operand, and if the statement is true, the operator is known as the Less than Operator.
>
Greater than Operator (>) checks the value of the left operand is greater than the right operand, and if the statement is true, the operator is said to be the Greater Than Operator.
<=
Less than Equal To Operator (<=) checks whether the value of the left operand is less than or equal to the right operand, and if the statement is true, the operator is said to be the Less than Equal To Operator.
>=
Greater than Equal To Operator (>=) checks whether the left operand's value is greater than or equal to the right operand. If the statement is true, the operator is said to be the Greater than Equal to Operator.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/* relational operators in C */
#include <stdio.h>
main() {
int a = 23;
int b = 9;
int c ;
if( a == b ) {
printf("Line 1 - a is equal to b\n" );
} else {
printf("Line 1 - a is not equal to b\n" );
}
if ( a < b ) {
printf("Line 2 - a is less than b\n" );
} else {
printf("Line 2 - a is not less than b\n" );
}
if ( a > b ) {
printf("Line 3 - a is greater than b\n" );
} else {
printf("Line 3 - a is not greater than b\n" );
}
/* Lets change value of a and b */
a = 5;
b = 20;
if ( a <= b ) {
printf("Line 4 - a is either less than or equal to b\n" );
}
if ( b >= a ) {
printf("Line 5 - b is either greater than or equal to b\n" );
}
}
Switch Case Statement in C
Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case match is found, a block of statements associated with that particular case is executed.
Each case in a block of a switch has a different name/number which is referred to as an identifier. The value provided by the user is compared with all the cases inside the switch block until the match is found.
If a case match is NOT found, then the default statement is executed, and the control goes out of the switch block.
Syntax for Switch Case Statement in C
switch(expression) {
case constant-expression :
statement(s);
break; /* optional */
case constant-expression :
statement(s);
break; /* optional */
/* you can have any number of case statements */
default : /* Optional */
statement(s);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/* switch case statement in C language*/
// Program to create a simple calculator
#include <stdio.h>
int main() {
char operation;
double n1, n2;
printf("Enter an operator (+, -, *, /): ");
scanf("%c", &operation);
printf("Enter two operands: ");
scanf("%lf %lf",&n1, &n2);
switch(operation)
{
case '+':
printf("%.1lf + %.1lf = %.1lf",n1, n2, n1+n2);
break;
case '-':
printf("%.1lf - %.1lf = %.1lf",n1, n2, n1-n2);
break;
case '*':
printf("%.1lf * %.1lf = %.1lf",n1, n2, n1*n2);
break;
case '/':
printf("%.1lf / %.1lf = %.1lf",n1, n2, n1/n2);
break;
// operator doesn't match any case constant +, -, *, /
default:
printf("Error! operator is not correct");
}
return 0;
}
While Loop Statement in C
While loop is also known as a pre-tested loop. In general, a while loop allows a part of the code to be executed multiple times depending upon a given boolean condition. It can be viewed as a repeating if statement. The while loop is mostly used in the case where the number of iterations is not known in advance.
The while loop evaluates the test expression inside the parentheses (). If test expression is true, statements inside the body of while loop are executed. Then, test expression is evaluated again. The process goes on until test expression is evaluated to false. If test expression is false, the loop terminates.
Syntax of While Loop Statement in C
while (testExpression) {
// the body of the loop
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/* while loop statement in C language */
#include<stdio.h>
int main()
{
int n, num, sum = 0, remainder;
printf("Enter a number: ");
scanf("%d", &n);
num = n;
// keep looping while n > 0
while( n > 0 )
{
remainder = n % 10; // get the last digit of n
sum += remainder; // add the remainder to the sum
n /= 10; // remove the last digit from n
}
printf("Sum of digits of %d is %d", num, sum);
// signal to operating system everything works fine
return 0;
}
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts.
main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined.
main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed.
Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main()
{
.........
// codes start from here
.........
}
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value.
In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library.
• An operating system always calls the main() function when a programmers or users execute their programming code.
• It is responsible for starting and ends of the program.
• It is a universally accepted keyword in programming language and cannot change its meaning and name.
• A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program.
• A main() function is used to invoke the programming code at the run time, not at the compile time of a program.
• A main() function is followed by opening and closing parenthesis brackets.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/* basic c program by main() function example */
#include <stdio.h>
#include <conio.h>
main()
{
printf (" It is a main() function ");
int fun2(); // jump to void fun1() function
printf ("\n Finally exit from the main() function. ");
}
void fun1()
{
printf (" It is a second function. ");
printf (" Exit from the void fun1() function. ");
}
int fun2()
{
void fun1(); // jump to the int fun1() function
printf (" It is a third function. ");
printf (" Exit from the int fun2() function. ");
return 0;
}
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include:
• Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions.
• User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */
// C program to illustrate file inclusion
// <> used to import system header file
#include <stdio.h>
// " " used to import user-defined file
#include "process.h"
// main function
int main()
{
// add function defined in process.h
add(10, 20);
// mult function defined in process.h
multiply(10, 20);
// printf defined in stdio.h
printf("Process completed");
return 0;
}
scanf() Function in C
Read formatted data from stdin. Reads data from stdin and stores them according to the parameter format into the locations pointed by the additional arguments. The additional arguments should point to already allocated objects of the type specified by their corresponding format specifier within the format string.
In C programming, scanf() is one of the commonly used function to take input from the user. The scanf() function reads formatted input from the standard input such as keyboards. The scanf() function enables the programmer to accept formatted inputs to the application or production code. Moreover, by using this function, the users can provide dynamic input values to the application.
Syntax for scanf() Function in C
#include <stdio.h>
int scanf ( const char * format, ... );
format
C string that contains a sequence of characters that control how characters extracted from the stream are treated:
• Whitespace character: the function will read and ignore any whitespace characters encountered before the next non-whitespace character (whitespace characters include spaces, newline and tab characters -- see isspace). A single whitespace in the format string validates any quantity of whitespace characters extracted from the stream (including none).
• Non-whitespace character, except format specifier (%): Any character that is not either a whitespace character (blank, newline or tab) or part of a format specifier (which begin with a % character) causes the function to read the next character from the stream, compare it to this non-whitespace character and if it matches, it is discarded and the function continues with the next character of format. If the character does not match, the function fails, returning and leaving subsequent characters of the stream unread.
• Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format specifier, which is used to specify the type and format of the data to be retrieved from the stream and stored into the locations pointed by the additional arguments.
A format specifier for scanf follows this prototype:
%[*][width][length]specifier
specifier
Where the specifier character at the end is the most significant component, since it defines which characters are extracted, their interpretation and the type of its corresponding argument:
i – integer
Any number of digits, optionally preceded by a sign (+ or -). Decimal digits assumed by default (0-9), but a 0 prefix introduces octal digits (0-7), and 0x hexadecimal digits (0-f). Signed argument.
d or u – decimal integer
Any number of decimal digits (0-9), optionally preceded by a sign (+ or -).
d is for a signed argument, and u for an unsigned.
o – octal integer
Any number of octal digits (0-7), optionally preceded by a sign (+ or -). Unsigned argument.
x – hexadecimal integer
Any number of hexadecimal digits (0-9, a-f, A-F), optionally preceded by 0x or 0X, and all optionally preceded by a sign (+ or -). Unsigned argument.
f, e, g – floating point number
A series of decimal digits, optionally containing a decimal point, optionally preceeded by a sign (+ or -) and optionally followed by the e or E character and a decimal integer (or some of the other sequences supported by strtod). Implementations complying with C99 also support hexadecimal floating-point format when preceded by 0x or 0X.
c – character
The next character. If a width other than 1 is specified, the function reads exactly width characters and stores them in the successive locations of the array passed as argument. No null character is appended at the end.
s – string of characters
Any number of non-whitespace characters, stopping at the first whitespace character found. A terminating null character is automatically added at the end of the stored sequence.
p – pointer address
A sequence of characters representing a pointer. The particular format used depends on the system and library implementation, but it is the same as the one used to format %p in fprintf.
[characters] – scanset
Any number of the characters specified between the brackets.
A dash (-) that is not the first character may produce non-portable behavior in some library implementations.
[^characters] – negated scanset
Any number of characters none of them specified as characters between the brackets.
n – count
No input is consumed.
The number of characters read so far from stdin is stored in the pointed location.
%
A % followed by another % matches a single %.
Except for n, at least one character shall be consumed by any specifier. Otherwise the match fails, and the scan ends there.
sub-specifier
The format specifier can also contain sub-specifiers: asterisk (*), width and length (in that order), which are optional and follow these specifications:
*
An optional starting asterisk indicates that the data is to be read from the stream but ignored (i.e. it is not stored in the location pointed by an argument).
width
Specifies the maximum number of characters to be read in the current reading operation (optional).
length
One of hh, h, l, ll, j, z, t, L (optional). This alters the expected type of the storage pointed by the corresponding argument (see below).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a pointer to allocated storage where the interpretation of the extracted characters is stored with the appropriate type.
There should be at least as many of these arguments as the number of values stored by the format specifiers. Additional arguments are ignored by the function.
These arguments are expected to be pointers: to store the result of a scanf operation on a regular variable, its name should be preceded by the reference operator (&) (see example).
On success, the function returns the number of items of the argument list successfully filled. This count can match the expected number of items or be less (even zero) due to a matching failure, a reading error, or the reach of the end-of-file.
If a reading error happens or the end-of-file is reached while reading, the proper indicator is set (feof or ferror). And, if either happens before any data could be successfully read, EOF is returned.
If an encoding error happens interpreting wide characters, the function sets errno to EILSEQ.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/* read formatted data from stdin by scanf() function example */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, const char * argv[])
{
/* Define temporary variables */
char name[10];
int age;
int result;
/* Ask the user to enter their first name and age */
printf("Please enter your first name and your age.\n");
/* Read a name and age from the user */
result = scanf("%s %d",name, &age);
/* We were not able to parse the two required values */
if (result < 2)
{
/* Display an error and exit */
printf("Either name or age was not entered\n\n");
exit(0);
}
/* Display the values the user entered */
printf("Name: %s\n", name);
printf("Age: %d\n", age);
return 0;
}
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement)
{
//Statements to be executed repeatedly
}
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* for loop statement in C language */
// Program to calculate the sum of first n natural numbers
// Positive integers 1,2,3...n are known as natural numbers
#include <stdio.h>
int main()
{
int num, count, sum = 0;
printf("Enter a positive integer: ");
scanf("%d", &num);
// for loop terminates when num is less than count
for(count = 1; count <= num; ++count)
{
sum += count;
}
printf("Sum = %d", sum);
return 0;
}
strrev() Function in C
The strrev(string) function returns reverse of the given string. An array of characters is called a string. This function is used for reversing a string. The reversed string is stored in the same string. strrev() is a non-standard C library function, sometimes found in <string.h> strrev() is one of the inbuilt string function in c programming which is used to reverse a given string.
Syntax for strrev() Function in C
#include <string.h>
char* strrev( char* string );
string
The given string which is needed to be reversed.
This function returns the string after reversing the given string.
This is a non-standard function that works only with older versions of Microsoft C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/* reverse the user-specified string by strrev() string function code example */
#include <stdio.h>
#include <string.h>
int main()
{
char str[] = "C Programming Tutorial";
char str1[] = "C language";
char str2[] = "Happy Codings";
char str3[] = "C Programming Examples";
char str4[] = "Happy Codings - Programming";
printf("\n Reverse String is = %s", strrev(str));
printf("\n Reverse String is = %s", strrev(str1));
printf("\n Reverse String is = %s", strrev(str2));
printf("\n Reverse String is = %s", strrev(str3));
printf("\n Reverse String is = %s", strrev(str3));
}
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers.
printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h>
int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout.
It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested.
A format specifier follows this prototype: [see compatibility note below]
%[flags][width][.precision][length]specifier
Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream.
The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0.
For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6).
For g and G specifiers: This is the maximum number of significant digits to be printed.
For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered.
If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n).
There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function.
If a writing error occurs, the error indicator (ferror) is set and a negative number is returned.
If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/* print formatted data to stdout by printf() function example */
#include <stdio.h>
int main()
{
char ch;
char str[100];
int a;
float b;
printf("Enter any character \n");
scanf("%c", &ch);
printf("Entered character is %c \n", ch);
printf("Enter any string ( upto 100 character ) \n");
scanf("%s", &str);
printf("Entered string is %s \n", str);
printf("Enter integer and then a float: ");
// Taking multiple inputs
scanf("%d%f", &a, &b);
printf("You entered %d and %f", a, b);
return 0;
}
strcat() Function in C
Concatenate strings. Appends a copy of the source string to the destination string. The terminating null character in destination is overwritten by the first character of source, and a null-character is included at the end of the new string formed by the concatenation of both in destination.
Destination and source shall not overlap.
Syntax for strcat() Function in C
#include <string.h>
char * strcat ( char * destination, const char * source );
destination
Pointer to the destination array, which should contain a C string, and be large enough to contain the concatenated resulting string.
source
C string to be appended. This should not overlap destination.
Destination is returned.
The strcat() function is used for string concatenation. It concatenates the specified string at the end of the another specified string.
Use the strcat function with caution as it is easy to concatenate more bytes into your variable using the strcat function, which can cause unpredictable behavior.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/* contcatenate (join) two strings by strcat() function() example. */
// C,C++ program demonstrate difference between
// strncat() and strcat()
#include <stdio.h>
#include <string.h>
int main()
{
// Take any two strings
char src[50] = "string1";
char dest1[50] = "string2";
char dest2[50] = "string3";
printf("Before strcat() function execution, ");
printf("destination string : %s\n", dest1);
// Appends the entire string of src to dest1
strcat(dest1, src);
// Prints the string
printf("After strcat() function execution, ");
printf("destination string : %s\n", dest1);
printf("Before strncat() function execution, ");
printf("destination string : %s\n", dest2);
// Appends 3 characters from src to dest2
strncat(dest2, src, 3);
// Prints the string
printf("After strncat() function execution, ");
printf("destination string : %s\n", dest2);
return 0;
}
Break Statement in C
The break is a keyword in C which is used to bring the program control out of the loop. The break statement is used inside loops or switch statement. The break statement breaks the loop one by one, i.e., in the case of nested loops, it breaks the inner loop first and then proceeds to outer loops.
Syntax for Break Statement in C
//loop statement... break;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/* bring the program control out of the loop by break keyword */
// Program to calculate the sum of numbers (10 numbers max)
// If the user enters a negative number, the loop terminates
#include <stdio.h>
int main() {
int i;
double number, sum = 0.0;
for (i = 1; i <= 10; ++i) {
printf("Enter n%d: ", i);
scanf("%lf", &number);
// if the user enters a negative number, break the loop
if (number < 0.0) {
break;
}
sum += number; // sum = sum + number;
}
printf("Sum = %.2lf", sum);
return 0;
}
In this c program code, a structure, student is created. This structure has three members: name (string), roll (integer) and marks (float). Then, we created a structure array of size 10
C program is an example of how to parse the command line arguments. It sets up all the global variables for a real program and it just doesn't have any body. Loop for each option.
In the following program user would be asked to enter 'two Strings' and then the C program would 'concatenate them'. For concatenation we have not used the standard library strcat()