Happy Codings - Programming Code Examples

C Programming Code Examples

C > Functions Code Examples

C program to print even or odd numbers in given range using recursion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* C program to print even or odd numbers in given range using recursion Write a recursive function in C programming to print all even or odd numbers between 1 to n. How to print all even numbers in given range using recursion in C programming. First give a meaningful name to the recursive function to print even odd numbers. Let's say printEvenOdd(). This function can print both even as well as odd numbers in given range. Next the function must accept two inputs i.e. the current number to print and the upper limit. Hence, update the function declaration to printEvenOdd(int cur, int limit);. Finally, the function prints all even or odd numbers in given range and returns void. So, the final function declaration to print even or odd numbers is - void printEvenOdd(int cur, int limit);. Printing either even or odd numbers have same logic. Starting from a seed value increment the current number by 2 to get next value. When the current number exceeds the upper limit to print then terminate from function. Which is our required base condition to exit control from function. If the current number is less than upper limit than print the current number and recursively call the printEvenOdd() with a new value of cur i.e. printEvenOdd(cur + 2, limit);. */ #include <stdio.h> /* Function declaration */ void printEvenOdd(int cur, int limit); int main() { int lowerLimit, upperLimit; // Input lower and upper limit from user printf("Enter lower limit: "); scanf("%d", &lowerLimit); printf("Enter upper limit: "); scanf("%d", &upperLimit); printf("Even/odd Numbers from %d to %d are: ", lowerLimit, upperLimit); printEvenOdd(lowerLimit, upperLimit); return 0; } void printEvenOdd(int cur, int limit) { if(cur > limit) return; printf("%d, ", cur); // Recursively call to printEvenOdd to get next value printEvenOdd(cur + 2, limit); }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
Functions in C Language
A function is a group of statements that together perform a task. Every C program has at least one function, which is main(), and all the most trivial programs can define additional functions. You can divide up your code into separate functions. How you divide up your code among different functions is up to you, but logically the division is such that each function performs a specific task. A function declaration tells the compiler about a function's name, return type, and parameters. A function definition provides the actual body of the function. The C standard library provides numerous built-in functions that your program can call. For example, strcat() to concatenate two strings, memcpy() to copy one memory location to another location, and many more functions. A function can also be referred as a method or a sub-routine or a procedure, etc.
Defining a Function
The general form of a function definition in C programming language is as follows:
return_type function_name( parameter list ) { body of the function }
A function definition in C programming consists of a function header and a function body. Here are all the parts of a function:
Return Type
A function may return a value. The return_type is the data type of the value the function returns. Some functions perform the desired operations without returning a value. In this case, the return_type is the keyword void.
Function Name
This is the actual name of the function. The function name and the parameter list together constitute the function signature.
Parameters
A parameter is like a placeholder. When a function is invoked, you pass a value to the parameter. This value is referred to as actual parameter or argument. The parameter list refers to the type, order, and number of the parameters of a function. Parameters are optional; that is, a function may contain no parameters.
Function Body
The function body contains a collection of statements that define what the function does. Given below is the source code for a function called max(). This function takes two parameters num1 and num2 and returns the maximum value between the two:
/* function returning the max between two numbers */ int max(int num1, int num2) { /* local variable declaration */ int result; if (num1 > num2) result = num1; else result = num2; return result; }
Function Declarations
A function declaration tells the compiler about a function name and how to call the function. The actual body of the function can be defined separately. A function declaration has the following parts:
return_type function_name( parameter list );
For the above defined function max(), the function declaration is as follows:
int max(int num1, int num2);
Parameter names are not important in function declaration only their type is required, so the following is also a valid declaration:
int max(int, int);
Function declaration is required when you define a function in one source file and you call that function in another file. In such case, you should declare the function at the top of the file calling the function.
Calling a Function
While creating a C function, you give a definition of what the function has to do. To use a function, you will have to call that function to perform the defined task. When a program calls a function, the program control is transferred to the called function. A called function performs a defined task and when its return statement is executed or when its function-ending closing brace is reached, it returns the program control back to the main program. To call a function, you simply need to pass the required parameters along with the function name, and if the function returns a value, then you can store the returned value.
Function Arguments
If a function is to use arguments, it must declare variables that accept the values of the arguments. These variables are called the formal parameters of the function. Formal parameters behave like other local variables inside the function and are created upon entry into the function and destroyed upon exit. While calling a function, there are two ways in which arguments can be passed to a function: Call by value: This method copies the actual value of an argument into the formal parameter of the function. In this case, changes made to the parameter inside the function have no effect on the argument. Call by reference: This method copies the address of an argument into the formal parameter. Inside the function, the address is used to access the actual argument used in the call. This means that changes made to the parameter affect the argument. There are the following advantages of C functions. • By using functions, we can avoid rewriting same logic/code again and again in a program. • We can call C functions any number of times in a program and from any place in a program. • We can track a large C program easily when it is divided into multiple functions. • Reusability is the main achievement of C functions. • However, Function calling is always a overhead in a C program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* creating a user defined function addition() */ #include <stdio.h> int addition(int num1, int num2) { int sum; /* Arguments are used here*/ sum = num1+num2; /* Function return type is integer so we are returning * an integer value, the sum of the passed numbers. */ return sum; } int main() { int var1, var2; printf("Enter number 1: "); scanf("%d",&var1); printf("Enter number 2: "); scanf("%d",&var2); /* Calling the function here, the function return type * is integer so we need an integer variable to hold the * returned value of this function. */ int res = addition(var1, var2); printf ("Output: %d", res); return 0; }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
scanf() Function in C
Read formatted data from stdin. Reads data from stdin and stores them according to the parameter format into the locations pointed by the additional arguments. The additional arguments should point to already allocated objects of the type specified by their corresponding format specifier within the format string. In C programming, scanf() is one of the commonly used function to take input from the user. The scanf() function reads formatted input from the standard input such as keyboards. The scanf() function enables the programmer to accept formatted inputs to the application or production code. Moreover, by using this function, the users can provide dynamic input values to the application.
Syntax for scanf() Function in C
#include <stdio.h> int scanf ( const char * format, ... );
format
C string that contains a sequence of characters that control how characters extracted from the stream are treated: • Whitespace character: the function will read and ignore any whitespace characters encountered before the next non-whitespace character (whitespace characters include spaces, newline and tab characters -- see isspace). A single whitespace in the format string validates any quantity of whitespace characters extracted from the stream (including none). • Non-whitespace character, except format specifier (%): Any character that is not either a whitespace character (blank, newline or tab) or part of a format specifier (which begin with a % character) causes the function to read the next character from the stream, compare it to this non-whitespace character and if it matches, it is discarded and the function continues with the next character of format. If the character does not match, the function fails, returning and leaving subsequent characters of the stream unread. • Format specifiers: A sequence formed by an initial percentage sign (%) indicates a format specifier, which is used to specify the type and format of the data to be retrieved from the stream and stored into the locations pointed by the additional arguments. A format specifier for scanf follows this prototype: %[*][width][length]specifier
specifier
Where the specifier character at the end is the most significant component, since it defines which characters are extracted, their interpretation and the type of its corresponding argument:
i – integer
Any number of digits, optionally preceded by a sign (+ or -). Decimal digits assumed by default (0-9), but a 0 prefix introduces octal digits (0-7), and 0x hexadecimal digits (0-f). Signed argument.
d or u – decimal integer
Any number of decimal digits (0-9), optionally preceded by a sign (+ or -). d is for a signed argument, and u for an unsigned.
o – octal integer
Any number of octal digits (0-7), optionally preceded by a sign (+ or -). Unsigned argument.
x – hexadecimal integer
Any number of hexadecimal digits (0-9, a-f, A-F), optionally preceded by 0x or 0X, and all optionally preceded by a sign (+ or -). Unsigned argument.
f, e, g – floating point number
A series of decimal digits, optionally containing a decimal point, optionally preceeded by a sign (+ or -) and optionally followed by the e or E character and a decimal integer (or some of the other sequences supported by strtod). Implementations complying with C99 also support hexadecimal floating-point format when preceded by 0x or 0X.
c – character
The next character. If a width other than 1 is specified, the function reads exactly width characters and stores them in the successive locations of the array passed as argument. No null character is appended at the end.
s – string of characters
Any number of non-whitespace characters, stopping at the first whitespace character found. A terminating null character is automatically added at the end of the stored sequence.
p – pointer address
A sequence of characters representing a pointer. The particular format used depends on the system and library implementation, but it is the same as the one used to format %p in fprintf.
[characters] – scanset
Any number of the characters specified between the brackets. A dash (-) that is not the first character may produce non-portable behavior in some library implementations.
[^characters] – negated scanset
Any number of characters none of them specified as characters between the brackets.
n – count
No input is consumed. The number of characters read so far from stdin is stored in the pointed location.
%
A % followed by another % matches a single %. Except for n, at least one character shall be consumed by any specifier. Otherwise the match fails, and the scan ends there.
sub-specifier
The format specifier can also contain sub-specifiers: asterisk (*), width and length (in that order), which are optional and follow these specifications:
*
An optional starting asterisk indicates that the data is to be read from the stream but ignored (i.e. it is not stored in the location pointed by an argument).
width
Specifies the maximum number of characters to be read in the current reading operation (optional).
length
One of hh, h, l, ll, j, z, t, L (optional). This alters the expected type of the storage pointed by the corresponding argument (see below).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a pointer to allocated storage where the interpretation of the extracted characters is stored with the appropriate type. There should be at least as many of these arguments as the number of values stored by the format specifiers. Additional arguments are ignored by the function. These arguments are expected to be pointers: to store the result of a scanf operation on a regular variable, its name should be preceded by the reference operator (&) (see example). On success, the function returns the number of items of the argument list successfully filled. This count can match the expected number of items or be less (even zero) due to a matching failure, a reading error, or the reach of the end-of-file. If a reading error happens or the end-of-file is reached while reading, the proper indicator is set (feof or ferror). And, if either happens before any data could be successfully read, EOF is returned. If an encoding error happens interpreting wide characters, the function sets errno to EILSEQ.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* read formatted data from stdin by scanf() function example */ #include <stdio.h> #include <stdlib.h> #include <string.h> int main(int argc, const char * argv[]) { /* Define temporary variables */ char name[10]; int age; int result; /* Ask the user to enter their first name and age */ printf("Please enter your first name and your age.\n"); /* Read a name and age from the user */ result = scanf("%s %d",name, &age); /* We were not able to parse the two required values */ if (result < 2) { /* Display an error and exit */ printf("Either name or age was not entered\n\n"); exit(0); } /* Display the values the user entered */ printf("Name: %s\n", name); printf("Age: %d\n", age); return 0; }


First give a meaningful name to our recursive function say pow(). The function must accept 2 numbers i.e. base. exponent and calculate its power. Hence, take 2 parameters for base
We are Counting the Number of characters in a given String to find out & display its Length on console. Upon 'execution' of this program, the user would be asked to enter string, then
C Programming Language input a year and check whether year is leap year or not using conditional/ternary operator ?:. How to check leap year using conditional operator in C. If a
Program code to find out how many strings there are. Read string length. Check buffer is large enough and increase if necessary. Now get the position for the beginning of each...