Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C Programming Code Examples

C > Games and Graphics Code Examples

ILLUSION PROGRAM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
/* ILLUSION PROGRAM */ #include<dos.h> #include<graphics.h> #include<stdio.h> #include<stdlib.h> #include<conio.h> union REGS in,o; circ() { int i; for(i=0;i<15;i++) circle(320,240,i*10); rectangle(240,160,400,320); } bulb() { int i=1,c=1; randomize(); while(!kbhit()) { if((i%2)==0) setcolor(c++); setfillstyle(1,getcolor()); circle(320,240,i*20); putpixel(320-i+2,240-i+2,1); floodfill(320-i+2,240-i+2,getcolor()); delay(1000); i++; if(i>=5) i=1; } } dot() { int i,j,of=40,wid=5; setcolor(8); setfillstyle(1,getcolor()); for(i=of;i<getmaxx();i+=of) bar(i,0,i+wid,getmaxy()); for(i=of;i<getmaxy();i+=of) bar(0,i,getmaxx(),i+wid); for(i=of;i<getmaxx();i+=of) for(j=of;j<getmaxy();j+=of) { setcolor(15); setfillstyle(1,getcolor()); circle(i+2,j+2,4); floodfill(i+2,j+2,getcolor()); } } void main() { int x=0,y=10,gd=DETECT,gm,i; initgraph(&gd,&gm,"c:\tc\bgi"); setcolor(YELLOW); settextstyle(1,0,6); outtextxy(0,240,"Count the black dots....."); sleep(4); cleardevice(); dot(); getch(); cleardevice(); setcolor(YELLOW); settextstyle(1,0,4); outtextxy(0,240,"I bet the lines of rectangle are straight....."); sleep(4); getch(); cleardevice(); circ(); getch(); closegraph(); }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
While Loop Statement in C
While loop is also known as a pre-tested loop. In general, a while loop allows a part of the code to be executed multiple times depending upon a given boolean condition. It can be viewed as a repeating if statement. The while loop is mostly used in the case where the number of iterations is not known in advance. The while loop evaluates the test expression inside the parentheses (). If test expression is true, statements inside the body of while loop are executed. Then, test expression is evaluated again. The process goes on until test expression is evaluated to false. If test expression is false, the loop terminates.
Syntax of While Loop Statement in C
while (testExpression) { // the body of the loop }
• The while loop evaluates the testExpression inside the parentheses (). • If testExpression is true, statements inside the body of while loop are executed. Then, testExpression is evaluated again. • The process goes on until testExpression is evaluated to false. • If testExpression is false, the loop terminates (ends).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* while loop statement in C language */ #include<stdio.h> int main() { int n, num, sum = 0, remainder; printf("Enter a number: "); scanf("%d", &n); num = n; // keep looping while n > 0 while( n > 0 ) { remainder = n % 10; // get the last digit of n sum += remainder; // add the remainder to the sum n /= 10; // remove the last digit from n } printf("Sum of digits of %d is %d", num, sum); // signal to operating system everything works fine return 0; }
closegraph() Function in C
The header file graphics.h contains closegraph() function which closes the graphics mode, deallocates all memory allocated by graphics system and restores the screen to the mode it was in before you called initgraph. closegraph() function is used to re-enter in the text mode and exit from the graphics mode. If you want to use both text mode and graphics mode in the program then you have to use both initgraph() and closegraph() function in the program.
Syntax for closegraph() Function in C
#include <graphics.h> void closegraph();
This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* deallocate all memory allocated by the graphics system by closegraph() function example */ // C Implementation for closegraph() #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // outtext function displays // text at current position. outtext("Press any key to close" " the graphics mode !!"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
rectangle() Function in C
rectangle() is used to draw a rectangle. Coordinates of left top and right bottom corner are required to draw the rectangle. left specifies the X-coordinate of top left corner, top specifies the Y-coordinate of top left corner, right specifies the X-coordinate of right bottom corner, bottom specifies the Y-coordinate of right bottom corner.
Syntax for rectangle() Function in C
#include<graphics.h> rectangle(int left, int top, int right, int bottom);
left
X coordinate of top left corner.
top
Y coordinate of top left corner.
right
X coordinate of bottom right corner.
bottom
Y coordinate of bottom right corner.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* draw a rectangle by rectangle() function example */ // C program to draw a rectangle #include <graphics.h> // Driver code int main() { // gm is Graphics mode which is a computer display // mode that generates image using pixels. // DETECT is a macro defined in "graphics.h" header file int gd = DETECT, gm; // location of left, top, right, bottom int left = 150, top = 150; int right = 450, bottom = 450; // initgraph initializes the graphics system // by loading a graphics driver from disk initgraph(&gd, &gm, ""); // rectangle function rectangle(left, top, right, bottom); getch(); // closegraph function closes the graphics // mode and deallocates all memory allocated // by graphics system . closegraph(); return 0; }
circle() Function in C
This library function is declared in graphics.h and used to draw a circle; it takes centre point coordinates and radius. Circle function is used to draw a circle with center (x,y) and third parameter specifies the radius of the circle. The code given below draws a circle. Where, (x, y) is center of the circle. 'radius' is the Radius of the circle.
Syntax for circle() Function in C
#include <graphics.h> circle(x, y, radius);
x
X-coordinate of the circle
y
Y-coordinate of the circle
radius
radius of the circle This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* draw a circle with center at (x, y) and given radius by circle() function example. */ // C Implementation for drawing circle #include <graphics.h> //driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // circle function circle(250, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
getmaxx() Function in C
The header file graphics.h contains getmaxx() function which returns the maximum X coordinate for current graphics mode and driver. getmaxx() returns the maximum (screen-relative) x value for the current graphics driver and mode. For example, on a CGA in 320*200 mode, getmaxx returns 319. getmaxx is invaluable for centering, determining the boundaries of a region onscreen, and so on.
Syntax for getmaxx() Function in C
#include <graphics.h> int getmaxx(void);
getmaxx returns the maximum x screen coordinate. getmaxx() function is used to fetch the maximum X coordinate for the current graphics mode or driver.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* get the maximum X coordinate for current graphics mode and driver by getmaxx() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; char arr[100]; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // sprintf stands for "String print". // Instead of printing on console, it // store output on char buffer which // are specified in sprintf sprintf(arr, "Maximum X coordinate for current " "graphics mode And driver = %d", getmaxx()); // outtext function displays text at // current position. outtext(arr); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
setcolor() Function in C
setcolor() function is used to set the foreground color in graphics mode. After resetting the foreground color you will get the text or any other shape which you want to draw in that color. setcolor sets the current drawing color to color, which can range from 0 to getmaxcolor. The current drawing color is the value to which pixels are set when lines, and so on are drawn. The drawing colors shown below are available for the CGA and EGA, respectively.
Syntax for setcolor() Function in C
#include <graphics.h> void setcolor(int color);
Each color is assigned a number. The possible color values are from 0 - 15: • BLACK – 0 • BLUE – 1 • GREEN – 2 • CYAN – 3 • RED – 4 • MAGENTA – 5 • BROWN – 6 • LIGHTGRAY – 7 • DARKGRAY – 8 • LIGHTBLUE – 9 • LIGHTGREEN – 10 • LIGHTCYAN – 11 • LIGHTRED – 12 • LIGHTMAGENTA – 13 • YELLOW – 14 • WHITE – 15 setcolor() functions contains only one argument that is color. It may be the color name enumerated in graphics.h header file or number assigned with that color.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* set the current drawing color to color, which can range from 0 to getmaxcolor by setcolor() function example */ // C Implementation for setcolor() #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm, color; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // Draws circle in white color // center at (100, 100) and radius // as 50 circle(100, 100, 50); // setcolor function setcolor(GREEN); // Draws circle in green color // center at (200, 200) and radius // as 50 circle(200, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
Logical Operators in C
An expression containing logical operator returns either 0 or 1 depending upon whether expression results true or false. Logical operators are commonly used in decision making in C programming. These operators are used to perform logical operations and used with conditional statements like C if-else statements.
&&
Called Logical AND operator. If both the operands are non-zero, then the condition becomes true.
||
Called Logical OR Operator. If any of the two operands is non-zero, then the condition becomes true.
!
Called Logical NOT Operator. It is used to reverse the logical state of its operand. If a condition is true, then Logical NOT operator will make it false.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* logical operators in C language */ #include <stdio.h> main() { int a = 4; int b = 23; int c ; if ( a && b ) { printf("Line 1 - Condition is true\n" ); } if ( a || b ) { printf("Line 2 - Condition is true\n" ); } /* lets change the value of a and b */ a = 2; b = 8; if ( a && b ) { printf("Line 3 - Condition is true\n" ); } else { printf("Line 3 - Condition is not true\n" ); } if ( !(a && b) ) { printf("Line 4 - Condition is true\n" ); } }
putpixel() Function in C
putpixel() plots a point in the color defined by color at (x,y). The header file graphics.h contains putpixel() function which plots a pixel at location (x, y) of specified color. Where, (x, y) is the location at which pixel is to be put, and color specifies the color of the pixel.
Syntax for putpixel() Function in C
#include <graphics.h> void putpixel(int x, int y, int color);
x
X coordinate of the point
y
Y coordinate of the point
color
specifies the color of the pixel To put a pixel on the screen at a particular position, calling the pixel() function is a good way. This function takes three parameters as the position of the pixel and also the color of the pixel. To use these function in your program, we would need to include graphics.h file in your program. You should also use getch() function to make the screen freeze.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* plot a pixel at location (x, y) of specified color by putpixel() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm, color; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // putpixel function putpixel(85, 35, GREEN); putpixel(30, 40, RED); putpixel(115, 50, YELLOW); putpixel(135, 50, CYAN); putpixel(45, 60, BLUE); putpixel(20, 100, WHITE); putpixel(200, 100, LIGHTBLUE); putpixel(150, 100, LIGHTGREEN); putpixel(200, 50, YELLOW); putpixel(120, 70, RED); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
settextstyle() Function in C
Settextstyle function is used to change the way in which text appears, using it we can modify the size of text, change direction of text and change the font of text. settextstyle sets the text font, the direction in which text is displayed, and the size of the characters. A call to settextstyle affects all text output by outtext and outtextxy.
Syntax for settextstyle() Function in C
#include <graphics.h> void settextstyle(int font, int direction, int charsize);
font
One 8x8 bit-mapped font and several "stroked" fonts are available. The 8x8 bit-mapped font is the default. The enumeration font_names, which is defined in graphics.h, provides names for these different font settings: • DEFAULT_FONT – 0 8x8 bit-mapped font • TRIPLEX_FONT – 1 Stroked triplex font • SMALL_FONT – 2 Stroked small font • SANS_SERIF_FONT – 3 Stroked sans-serif font • GOTHIC_FONT – 4 Stroked gothic font • SCRIPT_FONT – 5 Stroked script font • SIMPLEX_FONT – 6 Stroked triplex script font • TRIPLEX_SCR_FONT – 7 Stroked triplex script font • COMPLEX_FONT – 8 Stroked complex font • EUROPEAN_FONT – 9 Stroked European font • BOLD_FONT – 10 Stroked bold font The default bit-mapped font is built into the graphics system. Stroked fonts are stored in *.CHR disk files, and only one at a time is kept in memory. Therefore, when you select a stroked font (different from the last selected stroked font), the corresponding *.CHR file must be loaded from disk. To avoid this loading when several stroked fonts are used, you can link font files into your program. Do this by converting them into object files with the BGIOBJ utility, then registering them through registerbgifont.
direction
Font directions supported are horizontal text (left to right) and vertical text (rotated 90 degrees counterclockwise). The default direction is HORIZ_DIR. The size of each character can be magnified using the charsize factor. If charsize is nonzero, it can affect bit-mapped or stroked characters. A charsize value of 0 can be used only with stroked fonts.
charsize
• If charsize equals 1, outtext and outtextxy displays characters from the 8x8 bit-mapped font in an 8x8 pixel rectangle onscreen. • If charsize equals 2, these output functions display characters from the 8x8 bit-mapped font in a 16*16 pixel rectangle, and so on (up to a limit of ten times the normal size). • When charsize equals 0, the output functions outtext and outtextxy magnify the stroked font text using either the default character magnification factor (4) or the user-defined character size given by setusercharsize. Always use textheight and textwidth to determine the actual dimensions of the text. This function needs to be called before the outtextxy() function, otherwise there will be no effect on text and output will be the same.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/* set the text font, the direction in which text is displayed, and the size of the characters by settextstyle() function example. */ // C++ implementation for // settextstyle() function #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading // a graphics driver from disk initgraph(&gd, &gm, ""); // location of text int x = 150; int y = 150; // font style int font = 8; // font direction int direction = 0; // font size int font_size = 5; // for setting text style settextstyle(font, direction, font_size); // for printing text in graphics window outtextxy(x, y, "Happy Codings"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by graphics // system . closegraph(); return 0; }
Unions in C Language
A union is a special data type available in C that allows to store different data types in the same memory location. You can define a union with many members, but only one member can contain a value at any given time. Unions provide an efficient way of using the same memory location for multiple-purpose.
Defining a Union
To define a union, you must use the union statement in the same way as you did while defining a structure. The union statement defines a new data type with more than one member for your program. The format of the union statement is as follows:
union [union tag] { member definition; member definition; ... member definition; } [one or more union variables];
The union tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the union's definition, before the final semicolon, you can specify one or more union variables but it is optional. Here is the way you would define a union type named Data having three members i, f, and str:
union Data { int i; float f; char str[20]; } data;
Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. It means a single variable, i.e., same memory location, can be used to store multiple types of data. You can use any built-in or user defined data types inside a union based on your requirement.
Accessing Union Members
To access any member of a union, we use the member access operator (.). The member access operator is coded as a period between the union variable name and the union member that we wish to access. You would use the keyword union to define variables of union type.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* unions in C language */ #include <stdio.h> #include <string.h> union student { char name[20]; char subject[20]; float percentage; }; int main() { union student record1; union student record2; // assigning values to record1 union variable strcpy(record1.name, "Jack"); strcpy(record1.subject, "Red"); record1.percentage = 96.23; printf("Union record1 values example\n"); printf(" Name : %s \n", record1.name); printf(" Subject : %s \n", record1.subject); printf(" Percentage : %f \n\n", record1.percentage); // assigning values to record2 union variable printf("Union record2 values example\n"); strcpy(record2.name, "Mani"); printf(" Name : %s \n", record2.name); strcpy(record2.subject, "Physics"); printf(" Subject : %s \n", record2.subject); record2.percentage = 99.50; printf(" Percentage : %f \n", record2.percentage); return 0; }
floodfill() Function in C
floodfill function is used to fill an enclosed area. Current fill pattern and fill color is used to fill the area.(x, y) is any point on the screen if (x,y) lies inside the area then inside will be filled otherwise outside will be filled,border specifies the color of boundary of area. To change fill pattern and fill color use setfillstyle. floodfill fills an enclosed area on bitmap devices. (x,y) is a "seed point" within the enclosed area to be filled. The area bounded by the color border is flooded with the current fill pattern and fill color. If the seed point is within an enclosed area, the inside will be filled. If the seed is outside the enclosed area, the exterior will be filled. Use fillpoly instead of floodfill whenever possible so that you can maintain code compatibility with future versions.
Syntax for floodfill() Function in C
#include <graphics.h> void floodfill(int x, int y, int border);
x
X coordinate of point on the screen
y
Y coordinate of point on the screen
border
specifies the color of border of the enclosed area. int values corresponding to colors: • BLACK – 0 • BLUE – 1 • GREEN – 2 • CYAN – 3 • RED – 4 • MAGENTA – 5 • BROWN – 6 • LIGHTGRAY – 7 • DARKGRAY – 8 • LIGHTBLUE – 9 • LIGHTGREEN – 10 • LIGHTCYAN – 11 • LIGHTRED – 12 • LIGHTMAGENTA – 13 • YELLOW – 14 • WHITE – 15 If an error occurs while flooding a region, graphresult returns a value of -7.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* fill an enclosed area on bitmap devices by floodfill() function code example */ #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading // a graphics driver from disk initgraph(&gd, &gm, " "); // center and radius of circle int x_circle = 250; int y_circle = 250; int radius=100; // setting border color int border_color = WHITE; // set color and pattern setfillstyle(HATCH_FILL,RED); // x and y is a position and // radius is for radius of circle circle(x_circle,y_circle,radius); // fill the color at location // (x, y) with in border color floodfill(x_circle,y_circle,border_color); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system closegraph(); return 0; }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
sleep() Function in C
C programming language provides sleep() function in order to wait for a current thread for a specified time. slepp() function will sleep given thread specified time for the current executable. Of course, the CPU and other processes will run without a problem. The sleep() function shall cause the calling thread to be suspended from execution until either the number of realtime seconds specified by the argument seconds has elapsed or a signal is delivered to the calling thread and its action is to invoke a signal-catching function or to terminate the process. The suspension time may be longer than requested due to the scheduling of other activity by the system. The sleep() function shall cause the calling thread to be suspended from execution until either the number of realtime seconds specified by the argument seconds has elapsed or a signal is delivered to the calling thread and its action is to invoke a signal-catching function or to terminate the process. The suspension time may be longer than requested due to the scheduling of other activity by the system.
Syntax for sleep() Function in C
#include <unistd.h> unsigned sleep(unsigned seconds);
seconds
the specified number of seconds If sleep() returns because the requested time has elapsed, the value returned shall be 0. If sleep() returns due to delivery of a signal, the return value shall be the "unslept" amount (the requested time minus the time actually slept) in seconds. If a SIGALRM signal is generated for the calling process during execution of sleep() and if the SIGALRM signal is being ignored or blocked from delivery, it is unspecified whether sleep() returns when the SIGALRM signal is scheduled. If the signal is being blocked, it is also unspecified whether it remains pending after sleep() returns or it is discarded. If a SIGALRM signal is generated for the calling process during execution of sleep(), except as a result of a prior call to alarm(), and if the SIGALRM signal is not being ignored or blocked from delivery, it is unspecified whether that signal has any effect other than causing sleep() to return. If a signal-catching function interrupts sleep() and examines or changes either the time a SIGALRM is scheduled to be generated, the action associated with the SIGALRM signal, or whether the SIGALRM signal is blocked from delivery, the results are unspecified. If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an environment saved prior to the sleep() call, the action associated with the SIGALRM signal and the time at which a SIGALRM signal is scheduled to be generated are unspecified. It is also unspecified whether the SIGALRM signal is blocked, unless the process' signal mask is restored as part of the environment.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* suspend the implementation of the program for a specified number of seconds by sleep() function code example */ #include <stdio.h> #include <unistd.h> #include <dos.h> int main() { // message for user. printf("After printing this message the program will get delay for next 15 seconds\n"); // to terminate the process for next 15 seconds. sleep(15); printf("After printing this message the program will get delay for next 8 seconds\n"); // to terminate the process for next 8 seconds. sleep(8); return 0; }
Assignment Operators in C
Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* assignment operators in C language */ #include <stdio.h> main() { int a = 23; int c ; c = a; printf("Line 1 - = Operator Example, Value of c = %d\n", c ); c += a; printf("Line 2 - += Operator Example, Value of c = %d\n", c ); c -= a; printf("Line 3 - -= Operator Example, Value of c = %d\n", c ); c *= a; printf("Line 4 - *= Operator Example, Value of c = %d\n", c ); c /= a; printf("Line 5 - /= Operator Example, Value of c = %d\n", c ); c = 120; c %= a; printf("Line 6 - %= Operator Example, Value of c = %d\n", c ); c <<= 2; printf("Line 7 - <<= Operator Example, Value of c = %d\n", c ); c >>= 2; printf("Line 8 - >>= Operator Example, Value of c = %d\n", c ); c &= 2; printf("Line 9 - &= Operator Example, Value of c = %d\n", c ); c ^= 2; printf("Line 10 - ^= Operator Example, Value of c = %d\n", c ); c |= 2; printf("Line 11 - |= Operator Example, Value of c = %d\n", c ); }
bar() Function in C
bar() function is a C graphics function that is used to draw graphics in the C programming language. The graphics.h header contains functions that work for drawing graphics. The bar() function is also defined in the header file. The bar() function is used to draw a bar ( of bar graph) which is a 2-dimensional figure. It is filled rectangular figure. The function takes four arguments that are the coordinates of (X, Y) coordinates of the top-left corner of the bar {left and top } and (X, Y) coordinates of the bottom-right corner of the bar {right and bottom}.
Syntax for bar() Function in C
#include <graphics.h> void bar(int left, int top, int right, int bottom);
left
X coordinate of top left corner.
top
Y coordinate of top left corner.
right
X coordinate of bottom right corner.
bottom
Y coordinate of bottom right corner. Current fill pattern and fill color is used to fill the bar. To change fill pattern and fill color use setfillstyle.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/* draw a 2-dimensional, rectangular filled in bar by bar() function example */ // C implementation of bar() function #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // location of sides int left, top, right, bottom; // left, top, right, bottom denotes // location of rectangular bar bar(left = 150, top = 150, right = 190, bottom = 350); bar(left = 220, top = 250, right = 260, bottom = 350); bar(left = 290, top = 200, right = 330, bottom = 350); // y axis line line(100, 50, 100, 350); // x axis line line(100, 350, 400, 350); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
cleardevice() Function in C
The header file graphics.h contains cleardevice() function. cleardevice() is a function which is used to clear the screen by filling the whole screen with the current background color. It means that cleardevice() function is used to clear the whole screen with the current background color and it also sets the current position to (0,0). . Both clrscr() and cleardevice() functions are used to clear the screen but clrscr() is used in text mode and cleardevice function is used in the graphics mode.
Syntax for cleardevice() Function in C
#include <graphics.h> void cleardevice();
Clearing the screen is always an issue for developers, because now and then we want to show the user some useful or important data, which should be highlighted or at least have user's attention. It is important to note that, after clearing the device, we will lose all our drawing, shapes or images. It is useful but be little cautious.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* clear the screen in graphics mode and set the current position to (0,0) by cleardevice() function example.*/ #include <graphics.h> #include <conio.h> int main() { //initilizing graphic driver and //graphic mode variable int graphicdriver=DETECT,graphicmode; //calling initgraph initgraph(&graphicdriver,&graphicmode,"c:\\turboc3\\bgi"); //Printing message for user outtextxy(20, 20 + 20, "Program to use graph default in C graphics"); //message to clear screen outtextxy(20, 50 + 30, "Press any key to clear screen"); //getting character and clear the device screen getch(); cleardevice(); //message to press key to get exit from program outtextxy(20, 20 + 20, "Press any key to exit..."); getch(); return 0; }
initgraph() Function in C
initgraph initializes the graphics system by loading a graphics driver from disk (or validating a registered driver), and putting the system into graphics mode. To start the graphics system, first call the initgraph function. initgraph loads the graphics driver and puts the system into graphics mode. You can tell initgraph to use a particular graphics driver and mode, or to autodetect the attached video adapter at run time and pick the corresponding driver. If you tell initgraph to autodetect, it calls detectgraph to select a graphics driver and mode. initgraph also resets all graphics settings to their defaults (current position, palette, color, viewport, and so on) and resets graphresult to 0. Normally, initgraph loads a graphics driver by allocating memory for the driver (through _graphgetmem), then loading the appropriate .BGI file from disk. As an alternative to this dynamic loading scheme, you can link a graphics driver file (or several of them) directly into your executable program file.
Syntax for initgraph() Function in C
#include <graphics.h> void initgraph(int *graphdriver, int *graphmode, char *pathtodriver);
pathtodriver
pathtodriver specifies the directory path where initgraph looks for graphics drivers. initgraph first looks in the path specified in pathtodriver, then (if they are not there) in the current directory. Accordingly, if pathtodriver is null, the driver files (*.BGI) must be in the current directory. This is also the path settextstyle searches for the stroked character font files (*.CHR).
graphdriver
graphdriver is an integer that specifies the graphics driver to be used. You can give it a value using a constant of the graphics_drivers enumeration type, which is defined in graphics.h and listed below. • DETECT – 0 (requests autodetect) • CGA – 1 • MCGA – 2 • EGA – 3 • EGA64 – 4 • EGAMONO – 5 • IBM8514 – 6 • HERCMONO – 7 • ATT400 – 8 • VGA – 9 • PC3270 – 10
graphmode
graphmode is an integer that specifies the initial graphics mode (unless *graphdriver equals DETECT; in which case, *graphmode is set by initgraph to the highest resolution available for the detected driver). You can give *graphmode a value using a constant of the graphics_modes enumeration type, which is defined in graphics.h and listed below. initgraph always sets the internal error code; on success, it sets the code to 0. If an error occurred, *graphdriver is set to -2, -3, -4, or -5, and graphresult returns the same value as listed below: • grNotDetected: -2 Cannot detect a graphics card • grFileNotFound: -3 Cannot find driver file • grInvalidDriver: -4 Invalid driver • grNoLoadMem: -5 Insufficient memory to load driver
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* initgraph initializes the graphics system by loading a graphics driver by initgraph() function example*/ #include <graphics.h> #include <stdlib.h> #include <stdio.h> #include <conio.h> int main(void) { /* request auto detection */ int gdriver = DETECT, gmode, errorcode; /* initialize graphics mode */ initgraph(&gdriver, &gmode, ""); /* read result of initialization */ errorcode = graphresult(); if (errorcode != grOk) /* an error occurred */ { printf("Graphics error: %s\n", grapherrormsg(errorcode)); printf("Press any key to halt:"); getch(); exit(1); /* return with error code */ } /* draw a line */ line(0, 0, getmaxx(), getmaxy()); /* clean up */ getch(); closegraph(); return 0; }
outtextxy() Function in C
outtextxy displays a text string in the viewport at the given position (x, y), using the current justification settings and the current font, direction, and size. To maintain code compatibility when using several fonts, use textwidth and textheight to determine the dimensions of the string. If a string is printed with the default font using outtext or outtextxy, any part of the string that extends outside the current viewport is truncated. outtextxy is for use in graphics mode; it will not work in text mode.
Syntax for outtextxy() Function in C
#include <graphics.h> void outtextxy(int x, int y, char *textstring);
x
x-coordinate of the point
y
y-coordinate of the point
textstring
string to be displayed where, x, y are coordinates of the point and, third argument contains the address of string to be displayed. This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* display the text or string at a specified point (x, y) on the screen by outtextxy() function example */ // C Implementation for outtextxy() #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // outtextxy function outtextxy(200, 150, "Hello, Have a good day !"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement) { //Statements to be executed repeatedly }
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* for loop statement in C language */ // Program to calculate the sum of first n natural numbers // Positive integers 1,2,3...n are known as natural numbers #include <stdio.h> int main() { int num, count, sum = 0; printf("Enter a positive integer: "); scanf("%d", &num); // for loop terminates when num is less than count for(count = 1; count <= num; ++count) { sum += count; } printf("Sum = %d", sum); return 0; }
setfillstyle() Function in C
The header file graphics.h contains setfillstyle() function which sets the current fill pattern and fill color. Current fill pattern and fill color is used to fill the area. setfillstyle sets the current fill pattern and fill color. To set a user-defined fill pattern, do not give a pattern of 12 (USER_FILL) to setfillstyle; instead, call setfillpattern.
Syntax for setfillstyle() Function in C
#include<graphics.h> void setfillstyle(int pattern, int color);
color
Specify the color • BLACK – 0 • BLUE – 1 • GREEN – 2 • CYAN – 3 • RED – 4 • MAGENTA – 5 • BROWN – 6 • LIGHTGRAY – 7 • DARKGRAY – 8 • LIGHTBLUE – 9 • LIGHTGREEN – 10 • LIGHTCYAN – 11 • LIGHTRED – 12 • LIGHTMAGENTA – 13 • YELLOW – 14 • WHITE – 15
pattern
Specify the pattern • EMPTY_FILL – 0 • SOLID_FILL – 1 • LINE_FILL – 2 • LTSLASH_FILL – 3 • SLASH_FILL – 4 • BKSLASH_FILL – 5 • LTBKSLASH_FILL – 6 • HATCH_FILL – 7 • XHATCH_FILL – 8 • INTERLEAVE_FILL – 9 • WIDE_DOT_FILL – 10 • CLOSE_DOT_FILL – 11 • USER_FILL – 12 If invalid input is passed to setfillstyle, graphresult returns -1(grError), and the current fill pattern and fill color remain unchanged. Note: The EMPTY_FILL style is like a solid fill using the current background color (which is set by setbkcolor).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/* set the current fill pattern and fill color by setfillstyle() function example */ #include<stdio.h> #include<conio.h> #include<graphics.h> void main() { int gd=DETECT, gm,bkcolor; initgraph(&gd,&gm," "); setfillstyle(EMPTY_FILL,YELLOW); bar3d(2,150,100,200,25,1); setfillstyle(SOLID_FILL,RED); bar3d(150,150,250,200,25,1); setfillstyle(LINE_FILL,BLUE); bar3d(300,150,400,200,25,1); setfillstyle(LTSLASH_FILL,GREEN); bar3d(450,150,550,200,25,1); setfillstyle(SLASH_FILL,CYAN); bar3d(2,250,100,300,25,1); setfillstyle(BKSLASH_FILL,BROWN); bar3d(150,250,250,300,25,1); setfillstyle(LTBKSLASH_FILL,MAGENTA); bar3d(300,250,400,300,25,1); setfillstyle(HATCH_FILL,LIGHTRED); bar3d(450,250,550,300,25,1); setfillstyle(XHATCH_FILL,DARKGRAY); bar3d(2,350,100,400,25,1); setfillstyle(INTERLEAVE_FILL,YELLOW); bar3d(150,350,250,400,25,1); setfillstyle(WIDE_DOT_FILL,LIGHTMAGENTA); bar3d(300,350,400,400,25,1); setfillstyle(CLOSE_DOT_FILL,LIGHTGRAY); bar3d(450,350,550,400,25,1); getch(); closegraph(); }
delay() Function in C
Delay function is used to suspend execution of a program for a particular time. delay() function requires a parameter which should be a number, defining the milliseconds for the delay. To use delay function in your program you should include the "dos.h" header file which is not a part of standard C library. Here unsigned int is the number of milliseconds (remember 1 second = 1000 milliseconds).
Syntax for delay() Function in C
#include<stdio.h> void delay(unsigned int);
sleep() function requires a parameter which should be a number, defining the seconds to sleep. These functions are pretty useful when you want to show the user multiple outputs, for a given period of time. The nice thing about this is that we can also make alarm and reminder for the user in our program. Hence, these two functions are pretty handy, if you are planning to make a real-world application.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* suspend execution of a program for a particular time by delay() function example */ #include <stdio.h> //to use 'delay()' #include <dos.h> int main() { // message for user printf("After printing this message the program will get end in next 5 seconds \n"); // delay the process for 5 seconds as it takes integer value in milliseconds. delay(5000); // message for user. printf("After printing this message the program will get delay for next 15 seconds\n"); // to terminate the process for next 15 seconds. sleep(15); // message for user printf("After printing this message the program will get end in next 2 seconds \n"); // delay the process for 2 seconds as it takes integer value in milliseconds. delay(2000); return 0; }
randomize() Function in C
randomize() function is responsible for generating a random number every time you run the program. The result will be unique each time execution of the code. This unique output makes us rely more on this function. The randomize() function initializes the random number generator with a random value based on time. You can try the sample program given below in Turbo-C, it may not work as expected in other compilers.
Syntax for randomize() Function in C
#include <stdlib.h> randomize();
This function does not accept any parameter. For example, the first time when you run the code it will generate the output will be like 36, 23, 44, 88, 4, 23, 13, 36, 96 and 25. Next time it will generate the output as: 8, 64, 43, 28, 29, 73, 39, 18, 41, and 53. We will see how the output will be with and without using this function, by writing code in the next section.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* generating a random number every time by randomize() function code example */ #include <stdio.h> #include <conio.h> #include <stdlib.h> int main() { int n, max, num, c; printf("Enter the number of random numbers you want\n"); scanf("%d", &n); printf("Enter the maximum value of random number\n"); scanf("%d", &max); printf("%d random numbers from 0 to %d are:\n", n, max); randomize(); for (c = 1; c <= n; c++) { num = random(max); printf("%d\n",num); } getch(); return 0; }
Nested Loop Statement in C
C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of statements inside another loop. Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any number of loops. The nesting level can be defined at n times. You can define any type of loop inside another loop; for example, you can define 'while' loop inside a 'for' loop. A loop inside another loop is called a nested loop. The depth of nested loop depends on the complexity of a problem. We can have any number of nested loops as required. Consider a nested loop where the outer loop runs n times and consists of another loop inside it. The inner loop runs m times. Then, the total number of times the inner loop runs during the program execution is n*m.
Syntax for Nested Loop Statement in C
Outer_loop { Inner_loop { // inner loop statements. } // outer loop statements. }
Outer_loop and Inner_loop are the valid loops that can be a 'for' loop, 'while' loop or 'do-while' loop.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* nested loop statement in C language */ // C Program to print all prime factors // of a number using nested loop #include <math.h> #include <stdio.h> // A function to print all prime factors of a given number n void primeFactors(int n) { // Print the number of 2s that divide n while (n % 2 == 0) { printf("%d ", 2); n = n / 2; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for (int i = 3; i <= sqrt(n); i = i + 2) { // While i divides n, print i and divide n while (n % i == 0) { printf("%d ", i); n = n / i; } } // This condition is to handle the case when n // is a prime number greater than 2 if (n > 2) printf("%d ", n); } /* Driver program to test above function */ int main() { int n = 315; primeFactors(n); return 0; }
getmaxy() Function in C
The header file graphics.h contains getmaxy() function which returns the maximum Y coordinate for current graphics mode and driver. getmaxy returns the maximum (screen-relative) y value for the current graphics driver and mode. For example, on a CGA in 320*200 mode, getmaxy returns 199. getmaxy is invaluable for centering, determining the boundaries of a region onscreen, and so on.
Syntax for getmaxy() Function in C
#include <graphics.h> int getmaxy(void);
getmaxy() returns the maximum y screen coordinate. getmaxy() function is used to fetch the maximum Y coordinate for the current graphics mode or driver.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* get the maximum Y coordinate for current graphics mode and driver by getmaxy() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; char arr[100]; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // sprintf stands for "String print". // Instead of printing on console, it // store output on char buffer which // are specified in sprintf sprintf(arr, "Maximum Y coordinate for current " "graphics mode And driver = %d", getmaxy()); // outtext function displays text at // current position. outtext(arr); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
kbhit() in Function in C
The kbhit is basically the Keyboard Hit. Function kbhit in C is used to determine if a key has been pressed or not. This function is present at conio.h header file. So for using this, we have to include this header file into our code. The functionality of kbhit() is that, when a key is pressed it returns nonzero value, otherwise returns zero. kbhit() is used to determine if a key has been pressed or not. If a key has been pressed then it returns a non zero value otherwise returns zero.
Syntax for kbhit() Function in C
#include <conio.h> int kbhit();
Note : kbhit() is not a standard library function and should be avoided.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* check whether a key is pressed or not by kbhit() function example */ #include <stdio.h> #include <conio.h> main() { char ch; printf("Enter keys (ESC to exit)\n"); while (1) { //define infinite loop for taking keys if (kbhit) { ch = getch(); // Get typed character into ch if ((int)ch == 27) //when esc button is pressed, then it will comeout from loop break; printf("You have entered : %c\n", ch); } } }
getch() Function in C
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* wait for any character input from keyboard by getch() function example. */ // C code to illustrate working of // getch() to accept hidden inputs #include <conio.h> #include <dos.h> // delay() #include <stdio.h> #include <string.h> void main() { // Taking the password of 8 characters char pwd[9]; int i; // To clear the screen clrscr(); printf("Enter Password: "); for (i = 0; i < 8; i++) { // Get the hidden input // using getch() method pwd[i] = getch(); // Print * to show that // a character is entered printf("*"); } pwd[i] = '\0'; printf("\n"); // Now the hidden input is stored in pwd[] // So any operation can be done on it // Here we are just printing printf("Entered password: "); for (i = 0; pwd[i] != '\0'; i++) printf("%c", pwd[i]); // Now the console will wait // for a key to be pressed getch(); }


Declare c recursive function to print natural numbers in a range. Lets give a meaningful name to function, "printNaturalNumbers()". Next we need to print Natural Numbers in...
C program find sum of all odd numbers from 1 to n using for loop. Input upper limit to find sum of odd numbers from user. Store it in a variable say N and initialize other variable to
Takes the binary number (entered by user) as input and converts it into a decimal number using function. To understand this program, you should be familiar with the following C...
C program to read elements in an array and count total number of negative elements in array. Program to find all negative elements in an array. Logic to count total negative and