Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C Programming Code Examples

C > Games and Graphics Code Examples

PaintBrush Program

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* PaintBrush Program */ #include<conio.h> #include<graphics.h> #define L 75 #define R 77 #define U 72 #define D 80 #define DEL 83 #define PGD 81 #define PGU 73 #define HOME 71 #define END 79 #define F1 59 #define F2 60 #define F3 61 #define F4 62 #define F5 63 #define F6 64 #define F7 65 #define F8 66 #define F9 67 #define F10 68 #define F11 133 #define F12 134 #define INS 82 #define ALTS 31 #define ALTO 24 int x=350,y=230,c,w=0,z=0; void main(void) { int gd=DETECT,gm; char ch,ch1,ch2,text[60]; void *q; initgraph(&gd,&gm,""); setcolor(GREEN); outtextxy(200,0,"THIS IS A PAINT BRUSH SCREEN "); rectangle(10,10,600,460); rectangle(10,10,150,460); setcolor(7); outtextxy(12,20, "F1 : BLACK"); setcolor(1); outtextxy(12,50, "F2 : BLUE"); setcolor(2); outtextxy(12,80, "F3 : GREEN"); setcolor(3); outtextxy(12,110,"F4 : CYAN"); setcolor(4); outtextxy(12,140,"F5 : RED"); setcolor(5); outtextxy(12,170,"F6 : MAGENTA"); setcolor(8); outtextxy(12,200,"F7 : GRAY"); setcolor(9); outtextxy(12,230,"F8 : LIGHTBLUE"); setcolor(10); outtextxy(12,260,"F9 : LIGHTGREEN"); setcolor(12); outtextxy(12,290,"F10: LIGHTRED"); setcolor(14); outtextxy(12,320,"F11: YELLOW"); setcolor(15); outtextxy(12,350,"F12: WHITE"); rectangle(10,380,150,460); outtextxy(12,390,"INS:"); outtextxy(12,400,"1.CIRCLE"); outtextxy(12,410,"2.SQUARE"); outtextxy(12,420,"3.HORIZONTAL LINE"); outtextxy(12,430,"4.VERTICAL LINE"); while( getch()==0) { switch(getch()) { case F1: c=0;break; case F2: c=1;break; case F3: c=2;break; case F4: c=3;break; case F5: c=4;break; case F6: c=5;break; case F7: c=8;break; case F8: c=9;break; case F9: c=10;break; case F10: c=12;break; case F11: c=14;break; case F12: c=15;break; case L :x--; image(x,y,c);break; case R :x++; image(x,y,c);break; case U :y--; image(x,y,c);break; case D :y++; image(x,y,c);break; case DEL : image(x,y, 0);break; case PGD : y=y+3;break; case PGU : y=y-3;break; case HOME : x=x-3;break; case END : x=x+3;break; case INS : ch2=getch(); setcolor(c); if((int)ch2-48==1) { ch1=getch(); circle(x,y,2*(int)ch1-48); } else if((int)ch2-48==2) { ch1=getch(); rectangle(x,y,x+2*(int)ch1-48,y+2*(int)ch1-48); } else if((int)ch2-48==3) { w=x+20; line(x,y,w,y); gotoxy(w,y); } else if((int)ch2-48==4) { z=y+20; line(x,y,x,z); moveto(x,z); } break; } } } image(int x,int y, int c) { putpixel(x,y,c); putpixel(x++,y,c); putpixel(x,y,c); putpixel(x--,y,c); }
moveto() Function in C
The header file graphics.h contains moveto() function which changes the current position to (x, y). moveto() moves the current position (CP) to viewport position (x,y). Means if you want to move a point from the current position to a new position then you can use this function.
Syntax for moveto() Function in C
#include <graphics.h> void moveto(int x, int y);
x
specifies the X-coordinate.
y
specifies the Y-coordinate. This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/* move the current position (CP) to viewport position (x,y) by moveto() function example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; char arr[100]; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // sprintf stands for "String print". // Instead of printing on console, it // store output on char buffer which // are specified in sprintf sprintf(arr, "X = %d, Y = %d", getx(), gety()); // outtext function displays text at // current position. outtext(arr); // moveto function moveto(70, 40); // The function getx returns the X // coordinate of the current position. // The function gety returns the y // coordinate of current position. sprintf(arr, "X = %d, Y = %d", getx(), gety()); outtext(arr); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
#define Directive in C
In the C Programming Language, the #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. Macro definitions are not variables and cannot be changed by your program code like variables. You generally use this syntax when creating constants that represent numbers, strings or expressions.
Syntax for #define Directive in C
#define NAME value /* this syntax creates a constant using define*/ // Or #define NAME (expression) /* this syntax creates a constant using define*/
NAME
is the name of a particular constant. It can either be defined in smaller case or upper case or both. Most of the developers prefer the constant names to be in the upper case to find the differences.
value
defines the value of the constant.
Expression
is the value that is assigned to that constant which is defined. The expression should always be enclosed within the brackets if it has any operators. In the C programming language, the preprocessor directive acts an important role within which the #define directive is present that is used to define the constant or the micro substitution. The #define directive can use any of the basic data types present in the C standard. The #define preprocessor directive lets a programmer or a developer define the macros within the source code. This macro definition will allow the constant value that should be declared for the usage. Macro definitions cannot be changed within the program's code as one does with other variables, as macros are not variables. The #define is usually used in syntax that created a constant that is used to represent numbers, strings, or other expressions. The #define directive should not be enclosed with the semicolon(;). It is a common mistake done, and one should always treat this directive as any other header file. Enclosing it with a semicolon will generate an error. The #define creates a macro, which is in association with an identifier or is parameterized identifier along with a token string. After the macro is defined, then the compiler can substitute the token string for each occurrence of the identifier within the source file.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. */ #include <stdio.h> #include <string.h> typedef struct Books { char title[50]; char author[50]; char subject[100]; int book_id; } Book; int main( ) { Book book; strcpy( book.title, "C Programming"); strcpy( book.author, "XCoder"); strcpy( book.subject, "C Programming Tutorial"); book.book_id = 6495407; printf( "Book title : %s\n", book.title); printf( "Book author : %s\n", book.author); printf( "Book subject : %s\n", book.subject); printf( "Book book_id : %d\n", book.book_id); return 0; }
Goto Statement in C
A goto statement in C programming language provides an unconditional jump from the 'goto' to a labeled statement in the same function. The goto statement is known as jump statement in C. As the name suggests, goto is used to transfer the program control to a predefined label. The goto statment can be used to repeat some part of the code for a particular condition. It can also be used to break the multiple loops which can't be done by using a single break statement.
Syntax for Goto Statement in C
label: //some part of the code; goto label;
Use of goto statement is highly discouraged in any programming language because it makes difficult to trace the control flow of a program, making the program hard to understand and hard to modify. Any program that uses a goto can be rewritten to avoid them.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* transfer control of the program to the specified label by goto statement example */ // Program to calculate the sum and average of positive numbers // If the user enters a negative number, the sum and average are displayed. #include <stdio.h> int main() { const int maxInput = 100; int i; double number, average, sum = 0.0; for (i = 1; i <= maxInput; ++i) { printf("%d. Enter a number: ", i); scanf("%lf", &number); // go to jump if the user enters a negative number if (number < 0.0) { goto jump; } sum += number; } jump: average = sum / (i - 1); printf("Sum = %.2f\n", sum); printf("Average = %.2f", average); return 0; }
While Loop Statement in C
While loop is also known as a pre-tested loop. In general, a while loop allows a part of the code to be executed multiple times depending upon a given boolean condition. It can be viewed as a repeating if statement. The while loop is mostly used in the case where the number of iterations is not known in advance. The while loop evaluates the test expression inside the parentheses (). If test expression is true, statements inside the body of while loop are executed. Then, test expression is evaluated again. The process goes on until test expression is evaluated to false. If test expression is false, the loop terminates.
Syntax of While Loop Statement in C
while (testExpression) { // the body of the loop }
• The while loop evaluates the testExpression inside the parentheses (). • If testExpression is true, statements inside the body of while loop are executed. Then, testExpression is evaluated again. • The process goes on until testExpression is evaluated to false. • If testExpression is false, the loop terminates (ends).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* while loop statement in C language */ #include<stdio.h> int main() { int n, num, sum = 0, remainder; printf("Enter a number: "); scanf("%d", &n); num = n; // keep looping while n > 0 while( n > 0 ) { remainder = n % 10; // get the last digit of n sum += remainder; // add the remainder to the sum n /= 10; // remove the last digit from n } printf("Sum of digits of %d is %d", num, sum); // signal to operating system everything works fine return 0; }
initgraph() Function in C
initgraph initializes the graphics system by loading a graphics driver from disk (or validating a registered driver), and putting the system into graphics mode. To start the graphics system, first call the initgraph function. initgraph loads the graphics driver and puts the system into graphics mode. You can tell initgraph to use a particular graphics driver and mode, or to autodetect the attached video adapter at run time and pick the corresponding driver. If you tell initgraph to autodetect, it calls detectgraph to select a graphics driver and mode. initgraph also resets all graphics settings to their defaults (current position, palette, color, viewport, and so on) and resets graphresult to 0. Normally, initgraph loads a graphics driver by allocating memory for the driver (through _graphgetmem), then loading the appropriate .BGI file from disk. As an alternative to this dynamic loading scheme, you can link a graphics driver file (or several of them) directly into your executable program file.
Syntax for initgraph() Function in C
#include <graphics.h> void initgraph(int *graphdriver, int *graphmode, char *pathtodriver);
pathtodriver
pathtodriver specifies the directory path where initgraph looks for graphics drivers. initgraph first looks in the path specified in pathtodriver, then (if they are not there) in the current directory. Accordingly, if pathtodriver is null, the driver files (*.BGI) must be in the current directory. This is also the path settextstyle searches for the stroked character font files (*.CHR).
graphdriver
graphdriver is an integer that specifies the graphics driver to be used. You can give it a value using a constant of the graphics_drivers enumeration type, which is defined in graphics.h and listed below. • DETECT – 0 (requests autodetect) • CGA – 1 • MCGA – 2 • EGA – 3 • EGA64 – 4 • EGAMONO – 5 • IBM8514 – 6 • HERCMONO – 7 • ATT400 – 8 • VGA – 9 • PC3270 – 10
graphmode
graphmode is an integer that specifies the initial graphics mode (unless *graphdriver equals DETECT; in which case, *graphmode is set by initgraph to the highest resolution available for the detected driver). You can give *graphmode a value using a constant of the graphics_modes enumeration type, which is defined in graphics.h and listed below. initgraph always sets the internal error code; on success, it sets the code to 0. If an error occurred, *graphdriver is set to -2, -3, -4, or -5, and graphresult returns the same value as listed below: • grNotDetected: -2 Cannot detect a graphics card • grFileNotFound: -3 Cannot find driver file • grInvalidDriver: -4 Invalid driver • grNoLoadMem: -5 Insufficient memory to load driver
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* initgraph initializes the graphics system by loading a graphics driver by initgraph() function example*/ #include <graphics.h> #include <stdlib.h> #include <stdio.h> #include <conio.h> int main(void) { /* request auto detection */ int gdriver = DETECT, gmode, errorcode; /* initialize graphics mode */ initgraph(&gdriver, &gmode, ""); /* read result of initialization */ errorcode = graphresult(); if (errorcode != grOk) /* an error occurred */ { printf("Graphics error: %s\n", grapherrormsg(errorcode)); printf("Press any key to halt:"); getch(); exit(1); /* return with error code */ } /* draw a line */ line(0, 0, getmaxx(), getmaxy()); /* clean up */ getch(); closegraph(); return 0; }
circle() Function in C
This library function is declared in graphics.h and used to draw a circle; it takes centre point coordinates and radius. Circle function is used to draw a circle with center (x,y) and third parameter specifies the radius of the circle. The code given below draws a circle. Where, (x, y) is center of the circle. 'radius' is the Radius of the circle.
Syntax for circle() Function in C
#include <graphics.h> circle(x, y, radius);
x
X-coordinate of the circle
y
Y-coordinate of the circle
radius
radius of the circle This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* draw a circle with center at (x, y) and given radius by circle() function example. */ // C Implementation for drawing circle #include <graphics.h> //driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // circle function circle(250, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
setcolor() Function in C
setcolor() function is used to set the foreground color in graphics mode. After resetting the foreground color you will get the text or any other shape which you want to draw in that color. setcolor sets the current drawing color to color, which can range from 0 to getmaxcolor. The current drawing color is the value to which pixels are set when lines, and so on are drawn. The drawing colors shown below are available for the CGA and EGA, respectively.
Syntax for setcolor() Function in C
#include <graphics.h> void setcolor(int color);
Each color is assigned a number. The possible color values are from 0 - 15: • BLACK – 0 • BLUE – 1 • GREEN – 2 • CYAN – 3 • RED – 4 • MAGENTA – 5 • BROWN – 6 • LIGHTGRAY – 7 • DARKGRAY – 8 • LIGHTBLUE – 9 • LIGHTGREEN – 10 • LIGHTCYAN – 11 • LIGHTRED – 12 • LIGHTMAGENTA – 13 • YELLOW – 14 • WHITE – 15 setcolor() functions contains only one argument that is color. It may be the color name enumerated in graphics.h header file or number assigned with that color.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* set the current drawing color to color, which can range from 0 to getmaxcolor by setcolor() function example */ // C Implementation for setcolor() #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm, color; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // Draws circle in white color // center at (100, 100) and radius // as 50 circle(100, 100, 50); // setcolor function setcolor(GREEN); // Draws circle in green color // center at (200, 200) and radius // as 50 circle(200, 200, 50); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
putpixel() Function in C
putpixel() plots a point in the color defined by color at (x,y). The header file graphics.h contains putpixel() function which plots a pixel at location (x, y) of specified color. Where, (x, y) is the location at which pixel is to be put, and color specifies the color of the pixel.
Syntax for putpixel() Function in C
#include <graphics.h> void putpixel(int x, int y, int color);
x
X coordinate of the point
y
Y coordinate of the point
color
specifies the color of the pixel To put a pixel on the screen at a particular position, calling the pixel() function is a good way. This function takes three parameters as the position of the pixel and also the color of the pixel. To use these function in your program, we would need to include graphics.h file in your program. You should also use getch() function to make the screen freeze.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* plot a pixel at location (x, y) of specified color by putpixel() function code example */ #include <graphics.h> #include <stdio.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm, color; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // putpixel function putpixel(85, 35, GREEN); putpixel(30, 40, RED); putpixel(115, 50, YELLOW); putpixel(135, 50, CYAN); putpixel(45, 60, BLUE); putpixel(20, 100, WHITE); putpixel(200, 100, LIGHTBLUE); putpixel(150, 100, LIGHTGREEN); putpixel(200, 50, YELLOW); putpixel(120, 70, RED); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
getch() Function in C
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* wait for any character input from keyboard by getch() function example. */ // C code to illustrate working of // getch() to accept hidden inputs #include <conio.h> #include <dos.h> // delay() #include <stdio.h> #include <string.h> void main() { // Taking the password of 8 characters char pwd[9]; int i; // To clear the screen clrscr(); printf("Enter Password: "); for (i = 0; i < 8; i++) { // Get the hidden input // using getch() method pwd[i] = getch(); // Print * to show that // a character is entered printf("*"); } pwd[i] = '\0'; printf("\n"); // Now the hidden input is stored in pwd[] // So any operation can be done on it // Here we are just printing printf("Entered password: "); for (i = 0; pwd[i] != '\0'; i++) printf("%c", pwd[i]); // Now the console will wait // for a key to be pressed getch(); }
gotoxy() Function in C
The gotoxy() function places the cursor at the desired location on the screen. This means it is possible to change the cursor location on the screen using the gotoxy() function. It is basically used to print text wherever the cursor is moved.
Syntax for gotoxy() Function in C
#include <stdio.h> void gotoxy(int x, int y);
x
x-coordinate of the point
y
y-coordinate of the point where (x, y) is the position where we want to place the cursor. If you want to take your cursor on a particular coordinate on the window, then this function is made for you. What it takes from you are two parameters. The Integers should be the x and y coordinate of the console. This is pretty helpful for games and animations. The Integers should be passed when you call the function in your program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* place cursor at a desired location on screen by gotoxy() function example */ #include <stdio.h> //to use 'gotoxy()' and 'getch()' #include <conio.h> int main() { // define the type of variables int a, b; // define the value of variables a = 50; b = 30; // change cursor position on further co-ordinates. gotoxy(a, b); // message printf("The position of cursor is changed"); // for killing the execution getch(); return 0; }
outtextxy() Function in C
outtextxy displays a text string in the viewport at the given position (x, y), using the current justification settings and the current font, direction, and size. To maintain code compatibility when using several fonts, use textwidth and textheight to determine the dimensions of the string. If a string is printed with the default font using outtext or outtextxy, any part of the string that extends outside the current viewport is truncated. outtextxy is for use in graphics mode; it will not work in text mode.
Syntax for outtextxy() Function in C
#include <graphics.h> void outtextxy(int x, int y, char *textstring);
x
x-coordinate of the point
y
y-coordinate of the point
textstring
string to be displayed where, x, y are coordinates of the point and, third argument contains the address of string to be displayed. This function does not return any value.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* display the text or string at a specified point (x, y) on the screen by outtextxy() function example */ // C Implementation for outtextxy() #include <graphics.h> // driver code int main() { // gm is Graphics mode which is // a computer display mode that // generates image using pixels. // DETECT is a macro defined in // "graphics.h" header file int gd = DETECT, gm; // initgraph initializes the // graphics system by loading a // graphics driver from disk initgraph(&gd, &gm, ""); // outtextxy function outtextxy(200, 150, "Hello, Have a good day !"); getch(); // closegraph function closes the // graphics mode and deallocates // all memory allocated by // graphics system . closegraph(); return 0; }
If Else If Ladder in C/C++
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements. In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax of if...else Ladder in C
if (Condition1) { Statement1; } else if(Condition2) { Statement2; } . . . else if(ConditionN) { StatementN; } else { Default_Statement; }
In the above syntax of if-else-if, if the Condition1 is TRUE then the Statement1 will be executed and control goes to next statement in the program following if-else-if ladder. If Condition1 is FALSE then Condition2 will be checked, if Condition2 is TRUE then Statement2 will be executed and control goes to next statement in the program following if-else-if ladder. Similarly, if Condition2 is FALSE then next condition will be checked and the process continues. If all the conditions in the if-else-if ladder are evaluated to FALSE, then Default_Statement will be executed.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* write a C program which demonstrate use of if-else-if ladder statement */ #include<stdio.h> #include<conio.h> void main() { int a; printf("Enter a Number: "); scanf("%d",&a); if(a > 0) { printf("Given Number is Positive"); } else if(a == 0) { printf("Given Number is Zero"); } else if(a < 0) { printf("Given Number is Negative"); } getch(); }
line() Function in C
line() is a library function of graphics.c in c programming language which is used to draw a line from two coordinates. line() function is used to draw a line from a point(x1,y1) to point(x2,y2) i.e. (x1,y1) and (x2,y2) are end points of the line.
Syntax for line() Function in C
#include <graphics.h> void line(int x1, int y1, int x2, int y2);
x1
X coordinate of first point
y1
Y coordinate of first point.
x2
X coordinate of second point.
y2
Y coordinate of second point. This is a predefined function named line which is used to draw a line on the output screen. It takes 4 arguments, first two parameters represent an initial point and the last two arguments are for the final points of the line.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* draw a line from a point(x1,y1) to point(x2,y2) by line() function example */ /*C graphics program to draw a line.*/ #include <graphics.h> #include <conio.h> main() { int gd = DETECT, gm; //init graphics initgraph(&gd, &gm, "C:/TURBOC3/BGI"); /* if you are using turboc2 use below line to init graphics: initgraph(&gd, &gm, "C:/TC/BGI"); */ //draw a line /* line() function description parameter left to right x1: 100 y1: 100 x2: 200 y2: 100 */ line(100,100,200,100); //will draw a horizontal line line(10,10,200,10); //will draw another horizonatl line getch(); closegraph(); return 0; }
Switch Case Statement in C
Switch statement in C tests the value of a variable and compares it with multiple cases. Once the case match is found, a block of statements associated with that particular case is executed. Each case in a block of a switch has a different name/number which is referred to as an identifier. The value provided by the user is compared with all the cases inside the switch block until the match is found. If a case match is NOT found, then the default statement is executed, and the control goes out of the switch block.
Syntax for Switch Case Statement in C
switch(expression) { case constant-expression : statement(s); break; /* optional */ case constant-expression : statement(s); break; /* optional */ /* you can have any number of case statements */ default : /* Optional */ statement(s); }
• The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which the class has a single conversion function to an integral or enumerated type. • You can have any number of case statements within a switch. Each case is followed by the value to be compared to and a colon. • The constant-expression for a case must be the same data type as the variable in the switch, and it must be a constant or a literal. • When the variable being switched on is equal to a case, the statements following that case will execute until a break statement is reached. • When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch statement. • Not every case needs to contain a break. If no break appears, the flow of control will fall through to subsequent cases until a break is reached. • A switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for performing a task when none of the cases is true. No break is needed in the default case.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* switch case statement in C language*/ // Program to create a simple calculator #include <stdio.h> int main() { char operation; double n1, n2; printf("Enter an operator (+, -, *, /): "); scanf("%c", &operation); printf("Enter two operands: "); scanf("%lf %lf",&n1, &n2); switch(operation) { case '+': printf("%.1lf + %.1lf = %.1lf",n1, n2, n1+n2); break; case '-': printf("%.1lf - %.1lf = %.1lf",n1, n2, n1-n2); break; case '*': printf("%.1lf * %.1lf = %.1lf",n1, n2, n1*n2); break; case '/': printf("%.1lf / %.1lf = %.1lf",n1, n2, n1/n2); break; // operator doesn't match any case constant +, -, *, / default: printf("Error! operator is not correct"); } return 0; }
rectangle() Function in C
rectangle() is used to draw a rectangle. Coordinates of left top and right bottom corner are required to draw the rectangle. left specifies the X-coordinate of top left corner, top specifies the Y-coordinate of top left corner, right specifies the X-coordinate of right bottom corner, bottom specifies the Y-coordinate of right bottom corner.
Syntax for rectangle() Function in C
#include<graphics.h> rectangle(int left, int top, int right, int bottom);
left
X coordinate of top left corner.
top
Y coordinate of top left corner.
right
X coordinate of bottom right corner.
bottom
Y coordinate of bottom right corner.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* draw a rectangle by rectangle() function example */ // C program to draw a rectangle #include <graphics.h> // Driver code int main() { // gm is Graphics mode which is a computer display // mode that generates image using pixels. // DETECT is a macro defined in "graphics.h" header file int gd = DETECT, gm; // location of left, top, right, bottom int left = 150, top = 150; int right = 450, bottom = 450; // initgraph initializes the graphics system // by loading a graphics driver from disk initgraph(&gd, &gm, ""); // rectangle function rectangle(left, top, right, bottom); getch(); // closegraph function closes the graphics // mode and deallocates all memory allocated // by graphics system . closegraph(); return 0; }
Break Statement in C
The break is a keyword in C which is used to bring the program control out of the loop. The break statement is used inside loops or switch statement. The break statement breaks the loop one by one, i.e., in the case of nested loops, it breaks the inner loop first and then proceeds to outer loops.
Syntax for Break Statement in C
//loop statement... break;
When a break statement is encountered inside a loop, the loop is immediately terminated and the program control resumes at the next statement following the loop. It can be used to terminate a case in the switch statement (covered in the next chapter). If you are using nested loops, the break statement will stop the execution of the innermost loop and start executing the next line of code after the block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* bring the program control out of the loop by break keyword */ // Program to calculate the sum of numbers (10 numbers max) // If the user enters a negative number, the loop terminates #include <stdio.h> int main() { int i; double number, sum = 0.0; for (i = 1; i <= 10; ++i) { printf("Enter n%d: ", i); scanf("%lf", &number); // if the user enters a negative number, break the loop if (number < 0.0) { break; } sum += number; // sum = sum + number; } printf("Sum = %.2lf", sum); return 0; }


C Language program print code the alternate nodes in a linked list without using recursion. This C program, using iteration, displays the alternate nodes in a linked list. A linked list is
In The C, you can print any number series and I will show you how to 'print number series' in C Language with explanation. In case of print number series you need to focus on common
Program calculates the the sum of A.P series. This C program is used to find the sum of the "Arithmetic Progression Series" and Here A.P stands for Arithmetic Progression. Sequence
Input marks of five subjects of a student and calculate total, average and percentage of all subjects. Calculate total average percentage in C programming. Find total, average and...