Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C Programming Code Examples

C > Gnu-Linux Code Examples

Show,access enviroment var's

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Show,access enviroment var's */ #ifndef __USE_GNU #define _GNU_SOURCE #endif #include <stdio.h> #include <unistd.h> #include <stdlib.h> int main(void) { char **env = environ; char pwd[256] = {0}; printf("getenv() says, go home: %s\n", getenv("HOME")); getcwd(pwd, sizeof(pwd)); printf("getcwd says, no I am staying here: %s\n", pwd); printf("All other enviroment var's .... \n"); for(; *env; env++) printf("%s\n", *env); return 0; }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
getcwd() Function in C
Get the pathname of the current working directory. The getcwd() function shall place an absolute pathname of the current working directory in the array pointed to by buf, and return buf. The pathname copied to the array shall contain no components that are symbolic links. The size argument is the size in bytes of the character array pointed to by the buf argument. If buf is a null pointer, the behavior of getcwd() is unspecified.
Syntax for getcwd() Function in C
#include <unistd.h> char *getcwd(char *buf, size_t size);
buf
NULL, or a pointer to a buffer where the function can store the directory name.
size
The size of the buffer, in bytes. Upon successful completion, getcwd() shall return the buf argument. Otherwise, getcwd() shall return a null pointer and set errno to indicate the error. The contents of the array pointed to by buf are then undefined. The getcwd() function shall fail if:
EINVAL
The size argument is 0.
ERANGE
The size argument is greater than 0, but is smaller than the length of the pathname +1. The getcwd() function may fail if:
EACCES
Read or search permission was denied for a component of the pathname.
ENOMEM
Insufficient storage space is available.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* get path name of the working directory by getcwd() function code example */ /* This example determines the working directory. */ #define _POSIX_SOURCE #include <unistd.h> #undef _POSIX_SOURCE #include <stdio.h> main() { char cwd[256]; if (chdir("/tmp") != 0) perror("chdir() error()"); else { if (getcwd(cwd, sizeof(cwd)) == NULL) perror("getcwd() error"); else printf("current working directory is: %s\n", cwd); } }
#if, #else and #elif Directives in C
These directives works together and control compilation of portions of the program using some conditions. If the condition with the #if directive evaluates to a non zero value, then the group of line immediately after the #if directive will be executed otherwise if the condition with the #elif directive evaluates to a non zero value, then the group of line immediately after the #elif directive will be executed else the lines after #else directive will be executed.
Syntax for #if, #else and #elif Directives in C
#if macro_condition statements #elif macro_condition statements #else statements #endif
Notice how the entire structure of #if, #elif and #else chained directives ends with #endif.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* The pre-processor directives #if, #elif, #else, #endif are used as conditional compilation, whenever we need to compile specify code segments, we use these pre-processor directives. */ #include <stdio.h> #define ENG_US 1 #define ENG_UK 2 #define FRENCH 3 #define LANGUAGE ENG_UK int main(){ #if LANGUAGE==ENG_US printf("Selected language is: ENG_US\n"); #elif LANGUAGE==ENG_UK printf("Selected language is: ENG_UK\n"); #else printf("Selected language is: FRENCH\n"); #endif return 0; }
#define Directive in C
In the C Programming Language, the #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. Macro definitions are not variables and cannot be changed by your program code like variables. You generally use this syntax when creating constants that represent numbers, strings or expressions.
Syntax for #define Directive in C
#define NAME value /* this syntax creates a constant using define*/ // Or #define NAME (expression) /* this syntax creates a constant using define*/
NAME
is the name of a particular constant. It can either be defined in smaller case or upper case or both. Most of the developers prefer the constant names to be in the upper case to find the differences.
value
defines the value of the constant.
Expression
is the value that is assigned to that constant which is defined. The expression should always be enclosed within the brackets if it has any operators. In the C programming language, the preprocessor directive acts an important role within which the #define directive is present that is used to define the constant or the micro substitution. The #define directive can use any of the basic data types present in the C standard. The #define preprocessor directive lets a programmer or a developer define the macros within the source code. This macro definition will allow the constant value that should be declared for the usage. Macro definitions cannot be changed within the program's code as one does with other variables, as macros are not variables. The #define is usually used in syntax that created a constant that is used to represent numbers, strings, or other expressions. The #define directive should not be enclosed with the semicolon(;). It is a common mistake done, and one should always treat this directive as any other header file. Enclosing it with a semicolon will generate an error. The #define creates a macro, which is in association with an identifier or is parameterized identifier along with a token string. After the macro is defined, then the compiler can substitute the token string for each occurrence of the identifier within the source file.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* #define directive allows the definition of macros within your source code. These macro definitions allow constant values to be declared for use throughout your code. */ #include <stdio.h> #include <string.h> typedef struct Books { char title[50]; char author[50]; char subject[100]; int book_id; } Book; int main( ) { Book book; strcpy( book.title, "C Programming"); strcpy( book.author, "XCoder"); strcpy( book.subject, "C Programming Tutorial"); book.book_id = 6495407; printf( "Book title : %s\n", book.title); printf( "Book author : %s\n", book.author); printf( "Book subject : %s\n", book.subject); printf( "Book book_id : %d\n", book.book_id); return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
sizeof() Operator in C
The sizeof() operator is commonly used in C. It determines the size of the expression or the data type specified in the number of char-sized storage units. The sizeof() operator contains a single operand which can be either an expression or a data typecast where the cast is data type enclosed within parenthesis. The data type cannot only be primitive data types such as integer or floating data types, but it can also be pointer data types and compound data types such as unions and structs.
Syntax for sizeof() Operator in C
#include <stdio.h> sizeof (data type)
data type
Where data type is the desired data type including classes, structures, unions and any other user defined data type. Mainly, programs know the storage size of the primitive data types. Though the storage size of the data type is constant, it varies when implemented in different platforms. For example, we dynamically allocate the array space by using sizeof() operator:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* return the size of a variable by sizeof() operator example */ int main( int argc, char* argv[] ) { printf("sizeof(char) = %d\n", sizeof(char) ); printf("sizeof(short) = %d\n", sizeof(short) ); printf("sizeof(int) = %d\n", sizeof(int) ); printf("sizeof(long) = %d\n", sizeof(long) ); printf("sizeof(long long) = %d\n", sizeof(long long) ); printf("\n"); printf("sizeof(unsigned char) = %d\n", sizeof(unsigned char) ); printf("sizeof(unsigned short) = %d\n", sizeof(unsigned short) ); printf("sizeof(unsigned int) = %d\n", sizeof(unsigned int) ); printf("sizeof(unsigned long) = %d\n", sizeof(unsigned long) ); printf("\n"); printf("sizeof(float) = %d\n", sizeof(float) ); printf("sizeof(double) = %d\n", sizeof(double) ); printf("sizeof(long double) = %d\n", sizeof(long double) ); printf("\n"); int x; printf("sizeof(x) = %d\n", sizeof(x) ); }
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement) { //Statements to be executed repeatedly }
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* for loop statement in C language */ // Program to calculate the sum of first n natural numbers // Positive integers 1,2,3...n are known as natural numbers #include <stdio.h> int main() { int num, count, sum = 0; printf("Enter a positive integer: "); scanf("%d", &num); // for loop terminates when num is less than count for(count = 1; count <= num; ++count) { sum += count; } printf("Sum = %d", sum); return 0; }
getenv() Function in C
Get environment string. Retrieves a C-string containing the value of the environment variable whose name is specified as argument. If the requested variable is not part of the environment list, the function returns a null pointer. The pointer returned points to an internal memory block, whose content or validity may be altered by further calls to getenv (but not by other library functions). The string pointed by the pointer returned by this function shall not be modified by the program. Some systems and library implementations may allow to change environmental variables with specific functions (putenv, setenv...), but such functionality is non-portable.
Syntax for getenv() Function in C
#include <stdlib.h> char* getenv (const char* name);
name
C-string containing the name of the requested variable. Depending on the platform, this may either be case sensitive or not. The getenv() function searches the environment variables at runtime for an entry with the specified name, and returns a pointer to the variable's value. If there is no environment variable with the specified name, getenv() returns a null pointer. Your program must not modify the string addressed by the pointer returned, and the string at that address may be replaced by subsequent calls to getenv(). Furthermore, C itself does not define a function to set or modify environment variables, or any list of variable names that you can expect to exist; these features, if available at all, are system-specific. Function returns a C-string with the value of the requested environment variable, or a null pointer if such environment variable does not exist.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* obtain the string value of a specified environment variable by getenv() function code example */ #include <stdio.h> #include <stdlib.h> #include <assert.h> int main(void) { char *str; /* attempt to access environment variables using getenv() */ assert((str = getenv("HOME")) != NULL); printf("Value of \"HOME Environmemt Variable\" : %s\n", str); assert((str = getenv("PATH")) != NULL); printf("Value of \"PATH Environmemt Variable\" : %s\n", str); assert((str = getenv("LOGNAME")) != NULL); printf("Value of \"LOGNAME Environmemt Variable\" : %s\n", str); /* attempt to access variable of ours' choice */ assert((str = getenv("MELLO")) != NULL); printf("Value of \"MELLO Environmemt Variable\" : %s\n", str); return 0; }
#ifndef Directive in C
The #ifndef directive of the C Programming Language helps in allowing the conditional compilation. The C Programming Language's preprocessor helps in determining only if the macro provided is not at all existed before including the specific subsequent code in the C compilation process. The #ifndef preprocessor only checks If the specific macro is not at all defined with the help of the #define directive. If the condition is TRUE then it will be helpful in executing the code otherwise the else code of the #ifndef will be compiled or executed only if present.
Syntax for #ifndef Directive in C
ifndef macro_name statement1; statement2; statement3; . . . statementN; endif
If the macro with name as 'macroname' is not defined using the #define directive then only the block of statements will execute.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* the #ifndef directive allows for conditional compilation. The preprocessor determines if the provided macro does not exist before including the subsequent code in the compilation process. */ #include <stdio.h> // we define a variable #define xyz 32 int main() { // now we use #ifndef to see if xyz is defined or not // in this example, it is defined, we ll move to the // #else part of the code. #ifndef xyz printf("Error printing lottery number"); #else printf("Your lottery number is %d", xyz); #endif return 0; }


C Programming Language check whether an alphabet is Vowel or Consonant using if else. English alphabets a, e, i, o, u both lowercase & uppercase are known as vowels. Alphabets
Program search element in a tree recursively. Program searches for a given Node in a Tree. The Tree we have used is the "Binary Search Tree". A Binary search tree follows a concept
C language example implementation of LN command using system calls. Error: Too Few Arguments. Error: Too Many Arguments. Error: Invalid Syntax. Error: File name not...
Problem to display the highest literate rate and the highest income of a state using array of structures. Firstly accept total number of states so that we can accept all the details...
C Input base and height of a triangle and find area of the given triangle. How to find area of a triangle in C programming. Input base of the triangle. Store in some variable say base.
Create menu driven Calculator that performs basic mathematic operations (Add, Subtract, Multiply, Divide) use switch case & functions. The calculator should input two numbers and