C Programming Code Examples
C > Gnu-Linux Code Examples
Some cd-rom functions
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/* Some cd-rom functions */
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/cdrom.h>
/*
// close
*/
int cdr_close(char *dev) {
int fd;
if((fd = open(dev, O_RDONLY|O_NONBLOCK)) == -1)
return -1;
else if(ioctl(fd, CDROMCLOSETRAY) == -1)
return -1;
else
close(fd);
return 0;
}
/*
// eject
*/
int cdr_eject(char *dev) {
int fd;
if((fd = open(dev, O_RDONLY|O_NONBLOCK)) == -1)
return -1;
else if(ioctl(fd, CDROMEJECT) == -1)
return -1;
else
close(fd);
return 0;
}
/*
// lock
// - if lock == 1, lock
// - if lock == 0, unlock
*/
int cdlock(char *dev, int lock) {
int fd;
if((fd = open(dev, O_RDONLY|O_NONBLOCK)) == -1)
return -1;
else if(ioctl(fd, CDROM_LOCKDOOR, lock) == -1)
return -1;
else
close(fd);
return 0;
}
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include:
• Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions.
• User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
#include <header_file>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */
// C program to illustrate file inclusion
// <> used to import system header file
#include <stdio.h>
// " " used to import user-defined file
#include "process.h"
// main function
int main()
{
// add function defined in process.h
add(10, 20);
// mult function defined in process.h
multiply(10, 20);
// printf defined in stdio.h
printf("Process completed");
return 0;
}
open() Function in C
The open() function shall establish the connection between a file and a file descriptor. It shall create an open file description that refers to a file and a file descriptor that refers to that open file description. The file descriptor is used by other I/O functions to refer to that file. The path argument points to a pathname naming the file.
The open() function shall return a file descriptor for the named file that is the lowest file descriptor not currently open for that process. The open file description is new, and therefore the file descriptor shall not share it with any other process in the system. The FD_CLOEXEC file descriptor flag associated with the new file descriptor shall be cleared.
Syntax for open() Function in C
#include <fcntl.h>
int open(const char *path, int oflag, ... );
path
path to file which you want to use
oflag
How you like to use
The file offset used to mark the current position within the file shall be set to the beginning of the file.
The file status flags and file access modes of the open file description shall be set according to the value of oflag.
Values for oflag are constructed by a bitwise-inclusive OR of flags from the following list, defined in <fcntl.h>. Applications shall specify exactly one of the first three values (file access modes) below in the value of oflag:
O_RDONLY
Open for reading only.
O_WRONLY
Open for writing only.
O_RDWR
Open for reading and writing. The result is undefined if this flag is applied to a FIFO.
Any combination of the following may be used:
O_APPEND
If set, the file offset shall be set to the end of the file prior to each write.
O_CREAT
If the file exists, this flag has no effect except as noted under O_EXCL below. Otherwise, the file shall be created; the user ID of the file shall be set to the effective user ID of the process; the group ID of the file shall be set to the group ID of the file's parent directory or to the effective group ID of the process; and the access permission bits (see <sys/stat.h>) of the file mode shall be set to the value of the third argument taken as type mode_t modified as follows: a bitwise AND is performed on the file-mode bits and the corresponding bits in the complement of the process' file mode creation mask. Thus, all bits in the file mode whose corresponding bit in the file mode creation mask is set are cleared. When bits other than the file permission bits are set, the effect is unspecified. The third argument does not affect whether the file is open for reading, writing, or for both. Implementations shall provide a way to initialize the file's group ID to the group
ID of the parent directory. Implementations may, but need not, provide an implementation-defined way to initialize the file's group ID to the effective group ID of the calling process.
O_DSYNC
Write I/O operations on the file descriptor shall complete as defined by synchronized I/O data integrity completion.
O_EXCL
If O_CREAT and O_EXCL are set, open() shall fail if the file exists. The check for the existence of the file and the creation of the file if it does not exist shall be atomic with respect to other threads executing open() naming the same filename in the same directory with O_EXCL and O_CREAT set. If O_EXCL and O_CREAT are set, and path names a symbolic link, open() shall fail and set errno to [EEXIST], regardless of the contents of the symbolic link. If O_EXCL is set and O_CREAT is not set, the result is undefined.
O_NOCTTY
If set and path identifies a terminal device, open() shall not cause the terminal device to become the controlling terminal for the process.
O_NONBLOCK
When opening a FIFO with O_RDONLY or O_WRONLY set:
• If O_NONBLOCK is set, an open() for reading-only shall return without delay. An open() for writing-only shall return an error if no process currently has the file open for reading.
• If O_NONBLOCK is clear, an open() for reading-only shall block the calling thread until a thread opens the file for writing. An open() for writing-only shall block the calling thread until a thread opens the file for reading.
When opening a block special or character special file that supports non-blocking opens:
• If O_NONBLOCK is set, the open() function shall return without blocking for the device to be ready or available. Subsequent behavior of the device is device-specific.
• If O_NONBLOCK is clear, the open() function shall block the calling thread until the device is ready or available before returning.
Otherwise, the behavior of O_NONBLOCK is unspecified.
O_RSYNC
Read I/O operations on the file descriptor shall complete at the same level of integrity as specified by the O_DSYNC and O_SYNC flags. If both O_DSYNC and O_RSYNC are set in oflag, all I/O operations on the file descriptor shall complete as defined by synchronized I/O data integrity completion. If both O_SYNC and O_RSYNC are set in flags, all I/O operations on the file descriptor shall complete as defined by synchronized I/O file integrity completion.
O_SYNC
Write I/O operations on the file descriptor shall complete as defined by synchronized I/O file integrity completion.
O_TRUNC
If the file exists and is a regular file, and the file is successfully opened O_RDWR or O_WRONLY, its length shall be truncated to 0, and the mode and owner shall be unchanged. It shall have no effect on FIFO special files or terminal device files. Its effect on other file types is implementation-defined. The result of using O_TRUNC with O_RDONLY is undefined.
If O_CREAT is set and the file did not previously exist, upon successful completion, open() shall mark for update the st_atime, st_ctime, and st_mtime fields of the file and the st_ctime and st_mtime fields of the parent directory.
If O_TRUNC is set and the file did previously exist, upon successful completion, open() shall mark for update the st_ctime and st_mtime fields of the file.
If both the O_SYNC and O_DSYNC flags are set, the effect is as if only the O_SYNC flag was set.
If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR'ed with either O_RDONLY, O_WRONLY, or O_RDWR. Other flag values are not applicable to STREAMS devices and shall have no effect on them. The value O_NONBLOCK affects the operation of STREAMS drivers and certain functions applied to file descriptors associated with STREAMS files. For STREAMS drivers, the implementation of O_NONBLOCK is device-specific.
If path names the master side of a pseudo-terminal device, then it is unspecified whether open() locks the slave side so that it cannot be opened. Conforming applications shall call unlockpt() before opening the slave side.
The largest value that can be represented correctly in an object of type off_t shall be established as the offset maximum in the open file description.
Upon successful completion, the function shall open the file and return a non-negative integer representing the lowest numbered unused file descriptor. Otherwise, -1 shall be returned and errno set to indicate the error. No files shall be created or modified if the function returns -1.
The open() function shall fail if:
EACCES
Search permission is denied on a component of the path prefix, or the file exists and the permissions specified by oflag are denied, or the file does not exist and write permission is denied for the parent directory of the file to be created, or O_TRUNC is specified and write permission is denied.
EEXIST
O_CREAT and O_EXCL are set, and the named file exists.
EINTR
A signal was caught during open().
EINVAL
The implementation does not support synchronized I/O for this file.
EIO
The path argument names a STREAMS file and a hangup or error occurred during the open().
EISDIR
The named file is a directory and oflag includes O_WRONLY or O_RDWR.
ELOOP
A loop exists in symbolic links encountered during resolution of the path argument.
EMFILE
{OPEN_MAX} file descriptors are currently open in the calling process.
ENAMETOOLONG
The length of the path argument exceeds {PATH_MAX} or a pathname component is longer than {NAME_MAX}.
ENFILE
The maximum allowable number of files is currently open in the system.
ENOENT
O_CREAT is not set and the named file does not exist; or O_CREAT is set and either the path prefix does not exist or the path argument points to an empty string.
ENOSR
The path argument names a STREAMS-based file and the system is unable to allocate a STREAM.
ENOSPC
The directory or file system that would contain the new file cannot be expanded, the file does not exist, and O_CREAT is specified.
ENOTDIR
A component of the path prefix is not a directory.
ENXIO
O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, and no process has the file open for reading.
ENXIO
The named file is a character special or block special file, and the device associated with this special file does not exist.
EOVERFLOW
The named file is a regular file and the size of the file cannot be represented correctly in an object of type off_t.
EROFS
The named file resides on a read-only file system and either O_WRONLY, O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC is set in the oflag argument.
The open() function may fail if:
EAGAIN
The path argument names the slave side of a pseudo-terminal device that is locked.
EINVAL
The value of the oflag argument is not valid.
ELOOP
More than {SYMLOOP_MAX} symbolic links were encountered during resolution of the path argument.
ENAMETOOLONG
As a result of encountering a symbolic link in resolution of the path argument, the length of the substituted pathname string exceeded {PATH_MAX}.
ENOMEM
The path argument names a STREAMS file and the system is unable to allocate resources.
ETXTBSY
The file is a pure procedure (shared text) file that is being executed and oflag is O_WRONLY or O_RDWR.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/* open or create a file for reading, writing or executing by open() function code example */
// C program to illustrate
// open system call
#include<stdio.h>
#include<fcntl.h>
#include<errno.h>
extern int errno;
int main()
{
// if file does not have in directory
// then file foo.txt is created.
int fd = open("foo.txt", O_RDONLY | O_CREAT);
printf("fd = %d/n", fd);
if (fd ==-1)
{
// print which type of error have in a code
printf("Error Number % d\n", errno);
// print program detail "Success or failure"
perror("Program");
}
return 0;
}
If Else If Ladder in C/C++
The if...else statement executes two different codes depending upon whether the test expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities. The if...else ladder allows you to check between multiple test expressions and execute different statements.
In C/C++ if-else-if ladder helps user decide from among multiple options. The C/C++ if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the statement associated with that if is executed, and the rest of the C else-if ladder is bypassed. If none of the conditions is true, then the final else statement will be executed.
Syntax of if...else Ladder in C
if (Condition1)
{ Statement1; }
else if(Condition2)
{ Statement2; }
.
.
.
else if(ConditionN)
{ StatementN; }
else
{ Default_Statement; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/* write a C program which demonstrate use of if-else-if ladder statement */
#include<stdio.h>
#include<conio.h>
void main()
{
int a;
printf("Enter a Number: ");
scanf("%d",&a);
if(a > 0)
{
printf("Given Number is Positive");
}
else if(a == 0)
{
printf("Given Number is Zero");
}
else if(a < 0)
{
printf("Given Number is Negative");
}
getch();
}
close() Function in C
Closes a file descriptor, fildes. This frees the file descriptor to be returned by future open() calls and other calls that create file descriptors. The fildes argument must represent a hierarchical file system (HFS) file.
When the last open file descriptor for a file is closed, the file itself is closed. If the file's link count is 0 at that time, its space is freed and the file becomes inaccessible.
When the last open file descriptor for a pipe or FIFO file is closed, any data remaining in the pipe or FIFO file is discarded. close() unlocks (removes) all outstanding record locks that a process has on the associated file.
Syntax for close() Function in C
#include <unistd.h>
int close(int fildes);
fildes
The descriptor of the socket to be closed.
Behavior for sockets: close() call shuts down the socket associated with the socket descriptor socket, and frees resources allocated to the socket. If socket refers to an open TCP connection, the connection is closed. If a stream socket is closed when there is input data queued, the TCP connection is reset rather than being cleanly closed.
All sockets should be closed before the end of your process. You should issue a shutdown() call before you issue a close() call for a socket.
For AF_INET and AF_INET6 stream sockets (SOCK_STREAM) using SO_LINGER socket option, the socket does not immediately end if data is still present when a close is issued. The following structure is used to set or unset this option, and it can be found in sys/socket.h.
struct linger {
int l_onoff; /* zero=off, nonzero=on */
int l_linger; /* time is seconds to linger */
};
EAGAIN
The call did not complete because the specified socket descriptor is currently being used by another thread in the same process.
For example, in a multithreaded environment, close() fails and returns EAGAIN when the following sequence of events occurs (1) thread is blocked in a read() or select() call on a given file or socket descriptor and (2) another thread issues a simultaneous close() call for the same descriptor.
EBADF
fildes is not a valid open file descriptor, or the socket parameter is not a valid socket descriptor.
EBUSY
The file cannot be closed because it is blocked.
EINTR
close() was interrupted by a signal. The file may or may not be closed.
EIO
Added for XPG4.2: An I/O error occurred while reading from or writing to the file system.
ENXIO
fildes does not exist. The minor number for the file is incorrect.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/* close a file descriptor by close() function code example */
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
int main( void )
{
int filedes;
filedes = open( "file", O_RDONLY );
if( filedes != -1 ) {
/* process file */
close( filedes );
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
ioctl() Function in C
The ioctl() function manipulates the underlying device parameters of special files. In particular, many operating characteristics of character special files (e.g. terminals) may be controlled with ioctl() requests. The argument d must be an open file descriptor.
The second argument is a device-dependent request code. The third argument is an untyped pointer to memory. It's traditionally char *argp (from the days before void * was valid C), and will be so named for this discussion.
An ioctl() request has encoded in it whether the argument is an in parameter or out parameter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl() request are located in the file <sys/ioctl.h>.
Syntax for ioctl() Function in C
#include <sys/ioctl.h>
int ioctl(int d, int request, ...);
d
An open file descriptor for the file or device that you want to manipulate.
request
What you want to do to the file or device.
Usually, on success zero is returned. A few ioctl() requests use the return value as an output parameter and return a nonnegative value on success. On error, -1 is returned, and errno is set appropriately.
EBADF
d is not a valid descriptor.
EFAULT
argp references an inaccessible memory area.
EINVAL
Request or argp is not valid.
ENOTTY
d is not associated with a character special device.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/* perform a variety of control functions on devices by ioctl() function code example */
/* ioctl - control a STREAMS device (STREAMS) */
#include "stdio.h"
#include "stdlib.h"
#include "unistd.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "asm/etraxgpio.h"
int main(void) {
int fd;
int i;
int iomask;
if ((fd = open("/dev/gpiog", O_RDWR))<0) {
printf("Open error on /dev/gpiog\n");
exit(0);
}
iomask=1<<25;
for (i=0;i<10;i++) {
printf("Led ON\n");
ioctl(fd,_IO(ETRAXGPIO_IOCTYPE,IO_SETBITS),iomask);
sleep(1);
printf("Led OFF\n");
ioctl(fd,_IO(ETRAXGPIO_IOCTYPE,IO_CLRBITS),iomask);
sleep(1);
}
close(fd);
exit(0);
}
C program bubble sorting code on int array. Reading in numbers. Sorting them using a bubble sort. Comparing adjacent elements. Exchange elements. Display sorted list.
Sum the integers from 1 to a user-specified number in C programming language. Declare the number of integers to be summed. The loop counter. Sum integers from 1 to count.
Printing Prime Number Pyramid. To Evaluate Number is Prime or not Consecutively divide that number from 2 to n/2. To find whether 17 is 'Prime or Not' divide that number from 2 to
C Code to check if the "array is sorted" or not. Shuffle the "Array Elements" and check if the array is sorted or not & if not sorted calls the shuffle function to shuffle the array elements
Generates fibonacci series. In fibonacci series the first 2 numbers in the Fibonacci sequence are 0, 1, each Subsequent Number is the sum of the previous two. Example 0, 1, 1, 2, 3, 5, 8,
Percent means per cent (hundreds), a ratio of the parts out of 100. The symbol of percent is %. We count 'Percentage of Marks Obtained', return on investment and Percentage can go
C program code input radius of a circle from user and find diameter, circumference and area of the circle. How to calculate diameter, circumference and area of a circle whose...