Happy Codings - Programming Code Examples

C Programming Code Examples

C > Gnu-Linux Code Examples

What day of the week is July 4, 2001

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* What day of the week is July 4, 2001 */ #include <stdio.h> #include <time.h> int main(void) { struct tm time_str; char daybuf[20]; time_str.tm_year = 2001 - 1900; time_str.tm_mon = 7 - 1; time_str.tm_mday = 4; time_str.tm_hour = 0; time_str.tm_min = 0; time_str.tm_sec = 1; time_str.tm_isdst = -1; if(mktime(&time_str) == -1) fprintf(stderr, "Unkown -\n"); else strftime(daybuf, sizeof(daybuf), "%A", &time_str), printf("%s\n", daybuf); return 0; }
time() Function in C
The time() function is defined in time.h header file. This function returns the time since 00:00:00 UTC, January 1, 1970 (Unix timestamp) in seconds. If second is not a null pointer, the returned value is also stored in the object pointed to by second.
Syntax for time() Function in C
#include <time.h> time_t time( time_t *second )
second
This function accepts single parameter second. This parameter is used to set the time_t object which store the time. This function returns current calender time as a object of type time_t. It is used to get current system time as structure. time() function is a useful utility function that we can use to measure the elapsed time of our program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* return the time since 00:00:00 UTC, January 1, 1970 by time() function example */ #include <time.h> #include <stdlib.h> #include <stdio.h> int main(void) { time_t current_time; char* c_time_string; /* Obtain current time. */ current_time = time(NULL); if (current_time == ((time_t)-1)) { (void) fprintf(stderr, "Failure to obtain the current time.\n"); exit(EXIT_FAILURE); } /* Convert to local time format. */ c_time_string = ctime(¤t_time); if (c_time_string == NULL) { (void) fprintf(stderr, "Failure to convert the current time.\n"); exit(EXIT_FAILURE); } /* Print to stdout. ctime() has already added a terminating newline character. */ (void) printf("Current time is %s", c_time_string); exit(EXIT_SUCCESS); }
fprintf() Function in C
Write formatted data to stream. Writes the C string pointed by format to the stream. If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. After the format parameter, the function expects at least as many additional arguments as specified by format.
Syntax for fprintf() Function in C
#include <stdio.h> int fprintf ( FILE * stream, const char * format, ... );
stream
Pointer to a FILE object that identifies an output stream.
format
C string that contains the text to be written to the stream. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
h
The argument is interpreted as a short int or unsigned short int (only applies to integer specifiers: i, d, o, u, x and X).
l
The argument is interpreted as a long int or unsigned long int for integer specifiers (i, d, o, u, x and X), and as a wide character or wide character string for specifiers c and s.
L
The argument is interpreted as a long double (only applies to floating point specifiers - e, E, f, g and G).
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. On success, the total number of characters written is returned. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* write the C string pointed by format to the stream by fprintf() function example */ #include <stdio.h> void main() { FILE *fptr; int id; char name[30]; float salary; fptr = fopen("emp.txt", "w+");/* open for writing */ if (fptr == NULL) { printf("File does not exists \n"); return; } printf("Enter the id\n"); scanf("%d", &id); fprintf(fptr, "Id= %d\n", id); printf("Enter the name \n"); scanf("%s", name); fprintf(fptr, "Name= %s\n", name); printf("Enter the salary\n"); scanf("%f", &salary); fprintf(fptr, "Salary= %.2f\n", salary); fclose(fptr); }
strftime() Function in C
Format time as string. Copies into ptr the content of format, expanding its format specifiers into the corresponding values that represent the time described in timeptr, with a limit of maxsize characters. strftime() is a function in C which is used to format date and time. It comes under the header file time.h, which also contains a structure named struct tm which is used to hold the time and date.
Syntax for strftime() Function in C
#include <time.h> size_t strftime (char* ptr, size_t maxsize, const char* format, const struct tm* timeptr );
ptr
Pointer to the destination array where the resulting C string is copied.
maxsize
Maximum number of characters to be copied to ptr, including the terminating null-character.
format
C string containing any combination of regular characters and special format specifiers. These format specifiers are replaced by the function to the corresponding values to represent the time specified in timeptr.
Specifier
%a
Abbreviated weekday name (Example: Sun)
%A
Full weekday name (Example: Sunday)
%b
Abbreviated month name (Example: Mar)
%B
Full month name (Example: March)
%c
Date and time representation (Example: Sun Aug 19 02:56:02 2012)
%d
Day of the month (01-31) (Example: 19)
%H
Hour in 24h format (00-23) (Example: 14)
%I
Hour in 12h format (01-12) (Example: 05)
%j
Day of the year (001-366) (Example: 231)
%m
Month as a decimal number (01-12) (Example: 08)
%M
Minute (00-59) (Example: 55)
%p
AM or PM designation (Example: PM)
%S
Second (00-61) (Example: 02)
%U
Week number with the first Sunday as the first day of week one (00-53) (Example: 33)
%w
Weekday as a decimal number with Sunday as 0 (0-6) (Example: 4)
%W
Week number with the first Monday as the first day of week one (00-53) (Example: 34)
%x
Date representation (Example: 08/19/12)
%X
Time representation (Example: 02:50:06)
%y
Year, last two digits (00-99) (Example: 01)
%Y
Year (Example: 2012)
%Z
Timezone name or abbreviation (Example: CDT)
%%
A % sign (Example: %)
timeptr
Pointer to a tm structure that contains a calendar time broken down into its components (see struct tm).
struct tm { int tm_sec; /* seconds, range 0 to 59 */ int tm_min; /* minutes, range 0 to 59 */ int tm_hour; /* hours, range 0 to 23 */ int tm_mday; /* day of the month, range 1 to 31 */ int tm_mon; /* month, range 0 to 11 */ int tm_year; /* The number of years since 1900 */ int tm_wday; /* day of the week, range 0 to 6 */ int tm_yday; /* day in the year, range 0 to 365 */ int tm_isdst; /* daylight saving time */ };
If the length of the resulting C string, including the terminating null-character, doesn't exceed maxsize, the function returns the total number of characters copied to ptr (not including the terminating null-character). Otherwise, it returns zero, and the contents of the array pointed by ptr are indeterminate.
Compatibility
Particular library implementations may support additional specifiers or combinations. Those listed here are supported by the latest C and C++ standards (both published in 2011), but those in yellow were introduced in C99 (only required for C++ implementations since C++11), and may not be supported by libraries that comply with older standards.
Data races
The function accesses the array pointed by format and the object pointed by timeptr. On success, it also modifies the elements in the array pointed by ptr. Concurrently changing locale settings may also introduce data races.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* convert date and time to a string by strftime() function example */ // C program to demonstrate the working of strftime() #include <stdlib.h> #include <stdio.h> #include <time.h> #define Size 50 int main () { time_t t ; struct tm *tmp ; char MY_TIME[Size]; time( &t ); //localtime() uses the time pointed by t , // to fill a tm structure with the // values that represent the // corresponding local time. tmp = localtime( &t ); // using strftime to display time strftime(MY_TIME, sizeof(MY_TIME), "%x - %I:%M%p", tmp); printf("Formatted date & time : %s\n", MY_TIME ); return(0); }
mktime() Function in C
Convert tm structure to time_t. Returns the value of type time_t that represents the local time described by the tm structure pointed by timeptr (which may be modified). This function performs the reverse translation that localtime does. The values of the members tm_wday and tm_yday of timeptr are ignored, and the values of the other members are interpreted even if out of their valid ranges (see struct tm). For example, tm_mday may contain values above 31, which are interpreted accordingly as the days that follow the last day of the selected month. A call to this function automatically adjusts the values of the members of timeptr if they are off-range or -in the case of tm_wday and tm_yday- if they have values that do not match the date described by the other members.
Syntax for mktime() Function in C
#include <time.h> time_t mktime (struct tm * timeptr);
timeptr
Pointer to a tm structure that contains a calendar time broken down into its components (see struct tm).
struct tm { int tm_sec; /* seconds, range 0 to 59 */ int tm_min; /* minutes, range 0 to 59 */ int tm_hour; /* hours, range 0 to 23 */ int tm_mday; /* day of the month, range 1 to 31 */ int tm_mon; /* month, range 0 to 11 */ int tm_year; /* The number of years since 1900 */ int tm_wday; /* day of the week, range 0 to 6 */ int tm_yday; /* day in the year, range 0 to 365 */ int tm_isdst; /* daylight saving time */ };
A time_t value corresponding to the calendar time passed as argument. If the calendar time cannot be represented, a value of -1 is returned. The member tm_isdst is equal to 0 if daylight saving time is not in effect, or 1 if it is. A negative value indicates that the information is not available, in which case mktime() attempts to calculate whether daylight saving time is applicable at the time represented by the other members. The mktime() function ignores the tm_wday and tm_yday members in determining the time, but does use tm_isdst. The other members may contain values outside their normal ranges. Once it has calculated the time represented, mktime() adjusts the struct tm members so that each one is within its normal range, and also sets tm_wday and tm_yday accordingly. The return value is the number of seconds from the epoch (usually midnight on January 1, 1970, UTC) to the time represented in the structure, or -1 to indicate an error.
Data races
The object pointed by timeptr is accessed, and potentially modified.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* determines the time represented by a struct tm value by mktime() function code example */ /* convert tm structure to time_t by mktime() function code example */ #include <stdio.h> #include <stdlib.h> #include <time.h> static const char *week_day[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; int main( void ) { struct tm new_year; time_t t; new_year.tm_year = 2001 - 1900; new_year.tm_mon = 0; new_year.tm_mday = 1; new_year.tm_hour = 0; new_year.tm_min = 0; new_year.tm_sec = 0; new_year.tm_isdst = 0; t = mktime( &new_year ); if ( t == (time_t)-1) printf("No conversion possible.\n"); else printf( "The 21st century began on a %s.\n", week_day[ new_year.tm_wday ] ); return EXIT_SUCCESS; }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
sizeof() Operator in C
The sizeof() operator is commonly used in C. It determines the size of the expression or the data type specified in the number of char-sized storage units. The sizeof() operator contains a single operand which can be either an expression or a data typecast where the cast is data type enclosed within parenthesis. The data type cannot only be primitive data types such as integer or floating data types, but it can also be pointer data types and compound data types such as unions and structs.
Syntax for sizeof() Operator in C
#include <stdio.h> sizeof (data type)
data type
Where data type is the desired data type including classes, structures, unions and any other user defined data type. Mainly, programs know the storage size of the primitive data types. Though the storage size of the data type is constant, it varies when implemented in different platforms. For example, we dynamically allocate the array space by using sizeof() operator:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* return the size of a variable by sizeof() operator example */ int main( int argc, char* argv[] ) { printf("sizeof(char) = %d\n", sizeof(char) ); printf("sizeof(short) = %d\n", sizeof(short) ); printf("sizeof(int) = %d\n", sizeof(int) ); printf("sizeof(long) = %d\n", sizeof(long) ); printf("sizeof(long long) = %d\n", sizeof(long long) ); printf("\n"); printf("sizeof(unsigned char) = %d\n", sizeof(unsigned char) ); printf("sizeof(unsigned short) = %d\n", sizeof(unsigned short) ); printf("sizeof(unsigned int) = %d\n", sizeof(unsigned int) ); printf("sizeof(unsigned long) = %d\n", sizeof(unsigned long) ); printf("\n"); printf("sizeof(float) = %d\n", sizeof(float) ); printf("sizeof(double) = %d\n", sizeof(double) ); printf("sizeof(long double) = %d\n", sizeof(long double) ); printf("\n"); int x; printf("sizeof(x) = %d\n", sizeof(x) ); }


Generates fibonacci series. In fibonacci series the first 2 numbers in the Fibonacci sequence are 0, 1, each Subsequent Number is the sum of the previous two. Example 0, 1, 1, 2, 3, 5, 8,
C program, using iteration, reverses a stack content. Stack here is represented using a linked list. A linked list is an ordered set of data elements, each containing a link to its
How to check Strong Numbers using loop in C. What is Strong number? Strong number is a special number whose sum of factorial of digits is equal to the original number. 145 is
C Programming code implements two Stacks using a Single Array & Check for Overflow & Underflow. A Stack is a linear data structure in which a data item is inserted and deleted...