Happy Codings - Programming Code Examples
Html Css Web Design Sample Codes CPlusPlus Programming Sample Codes JavaScript Programming Sample Codes C Programming Sample Codes CSharp Programming Sample Codes Java Programming Sample Codes Php Programming Sample Codes Visual Basic Programming Sample Codes


C Programming Code Examples

C > Hardware Interaction Through C Code Examples

Display text using Bios routines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/* Display text using Bios routines */ #include<stdio.h> #include<dos.h> #include<conio.h> void main() { union REGS in,out,ins,oust; int i,j,row=0,col=0,colaux; char sentence[80]; clrscr(); gotoxy(1,1); printf("ENTER A STATEMENT : "); gets(sentence); clrscr(); in.h.ah=0x00;in.h.al=0x12;int86(0x10,&in,&out); in.h.ah=0x0F; int86(0x10,&in,&out); printf(" Video Mode = %u",out.h.al); printf(" Number Of Chararowers Column On Screen = %u",out.h.ah); printf(" Page Number = %u ",out.h.bh); gotoxy(1,1); printf("%s",sentence); in.h.ah=0x0D; in.h.bh=0; ins.h.ah=0x0C;ins.h.bh=0; for(i=0;i<15;i++) { row=0;col=0; for(j=0;j<640;j++) { in.x.dx=i; in.x.cx=j; ins.h.al=i+1; colaux=col*3; //adjusting text width if(colaux%640==0) { row+=55; col=0; } ins.x.cx=colaux; ins.x.dx=i*3+150+row; //adjusting text height;'150':-point where text starts int86(0x10,&in,&out); if(out.h.al!=0) int86(0x10,&ins,&oust); //printf("%u,",out.h.al); col++; } } getch(); in.h.ah=0x00;in.h.al=3;int86(0x10,&in,&out); }
printf() Function in C
Writes the C string pointed by format to the standard output (stdout). If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. printf format string refers to a control parameter used by a class of functions in the input/output libraries of C programming language. The string is written in a simple template language: characters are usually copied literally into the function's output, but format specifiers, which start with a % character, indicate the location and method to translate a piece of data (such as a number) to characters. "printf" is the name of one of the main C output functions, and stands for "print formatted". printf format strings are complementary to scanf format strings, which provide formatted input (parsing). In both cases these provide simple functionality and fixed format compared to more sophisticated and flexible template engines or parsers, but are sufficient for many purposes.
Syntax for printf() function in C
#include <stdio.h> int printf ( const char * format, ... );
format
C string that contains the text to be written to stdout. It can optionally contain embedded format specifiers that are replaced by the values specified in subsequent additional arguments and formatted as requested. A format specifier follows this prototype: [see compatibility note below] %[flags][width][.precision][length]specifier Where the specifier character at the end is the most significant component, since it defines the type and the interpretation of its corresponding argument:
specifier
a conversion format specifier.
d or i
Signed decimal integer
u
Unsigned decimal integer
o
Unsigned octal
x
Unsigned hexadecimal integer
X
Unsigned hexadecimal integer (uppercase)
f
Decimal floating point, lowercase
F
Decimal floating point, uppercase
e
Scientific notation (mantissa/exponent), lowercase
E
Scientific notation (mantissa/exponent), uppercase
g
Use the shortest representation: %e or %f
G
Use the shortest representation: %E or %F
a
Hexadecimal floating point, lowercase
A
Hexadecimal floating point, uppercase
c
Character
s
String of characters
p
Pointer address
n
Nothing printed. The corresponding argument must be a pointer to a signed int. The number of characters written so far is stored in the pointed location.
%
A % followed by another % character will write a single % to the stream. The format specifier can also contain sub-specifiers: flags, width, .precision and modifiers (in that order), which are optional and follow these specifications:
flags
one or more flags that modifies the conversion behavior (optional)
-
Left-justify within the given field width; Right justification is the default (see width sub-specifier).
+
Forces to preceed the result with a plus or minus sign (+ or -) even for positive numbers. By default, only negative numbers are preceded with a - sign.
(space)
If no sign is going to be written, a blank space is inserted before the value.
#
Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X respectively for values different than zero. Used with a, A, e, E, f, F, g or G it forces the written output to contain a decimal point even if no more digits follow. By default, if no digits follow, no decimal point is written.
0
Left-pads the number with zeroes (0) instead of spaces when padding is specified (see width sub-specifier).
width
an optional * or integer value used to specify minimum width field.
(number)
Minimum number of characters to be printed. If the value to be printed is shorter than this number, the result is padded with blank spaces. The value is not truncated even if the result is larger.
*
The width is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
.precision
an optional field consisting of a . followed by * or integer or nothing to specify the precision.
.number
For integer specifiers (d, i, o, u, x, X): precision specifies the minimum number of digits to be written. If the value to be written is shorter than this number, the result is padded with leading zeros. The value is not truncated even if the result is longer. A precision of 0 means that no character is written for the value 0. For a, A, e, E, f and F specifiers: this is the number of digits to be printed after the decimal point (by default, this is 6). For g and G specifiers: This is the maximum number of significant digits to be printed. For s: this is the maximum number of characters to be printed. By default all characters are printed until the ending null character is encountered. If the period is specified without an explicit value for precision, 0 is assumed.
.*
The precision is not specified in the format string, but as an additional integer value argument preceding the argument that has to be formatted.
length
an optional length modifier that specifies the size of the argument.
... (additional arguments)
Depending on the format string, the function may expect a sequence of additional arguments, each containing a value to be used to replace a format specifier in the format string (or a pointer to a storage location, for n). There should be at least as many of these arguments as the number of values specified in the format specifiers. Additional arguments are ignored by the function. If a writing error occurs, the error indicator (ferror) is set and a negative number is returned. If a multibyte character encoding error occurs while writing wide characters, errno is set to EILSEQ and a negative number is returned.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* print formatted data to stdout by printf() function example */ #include <stdio.h> int main() { char ch; char str[100]; int a; float b; printf("Enter any character \n"); scanf("%c", &ch); printf("Entered character is %c \n", ch); printf("Enter any string ( upto 100 character ) \n"); scanf("%s", &str); printf("Entered string is %s \n", str); printf("Enter integer and then a float: "); // Taking multiple inputs scanf("%d%f", &a, &b); printf("You entered %d and %f", a, b); return 0; }
gets() Function in C
Get string from stdin. Reads characters from the standard input (stdin) and stores them as a C string into str until a newline character or the end-of-file is reached. The newline character, if found, is not copied into str. A terminating null character is automatically appended after the characters copied to str. Notice that gets is quite different from fgets: not only gets uses stdin as source, but it does not include the ending newline character in the resulting string and does not allow to specify a maximum size for str (which can lead to buffer overflows). The gets() function enables the user to enter some characters followed by the enter key. All the characters entered by the user get stored in a character array. The null character is added to the array to make it a string. The gets() allows the user to enter the space-separated strings. It returns the string entered by the user.
Syntax for gets() Function in C
#include<stdio.h> char * gets ( char * str );
str
Pointer to a block of memory (array of char) where the string read is copied as a C string. On success, the function returns str. If the end-of-file is encountered while attempting to read a character, the eof indicator is set (feof). If this happens before any characters could be read, the pointer returned is a null pointer (and the contents of str remain unchanged). If a read error occurs, the error indicator (ferror) is set and a null pointer is also returned (but the contents pointed by str may have changed).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* read characters from the standard input (stdin) and stores them as a C string */ #include<stdio.h> #include<conio.h> #include<stdlib.h> void main() { clrscr(); FILE *fp; char fname[20]; printf("Enter filename : "); gets(fname); fp=fopen(fname, "r"); if(fp==NULL) { printf("Error in opening the file..!!\n"); printf("Press any key to exit..\n"); getch(); exit(1); } fclose(fp); getch(); }
clrscr() Function in C
Function clrscr() clears the screen and moves the cursor to the upper left-hand corner of the screen. If you are using the GCC compiler, use system function to execute the clear/cls command. clrscr() function is also a non-standard function defined in "conio.h" header. This function is used to clear the console screen. It is often used at the beginning of the program (mostly after variable declaration but not necessarily) so that the console is clear for our output.
Syntax to Clear the Console in C
#include<conio.h> clrscr(); OR system("cls"); OR system("clear");
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* clear the screen and moves the cursor to the upper left-hand corner of the screen by clrscr() function example. */ #include <stdio.h> // clrscr() function definition void clrscr(void) { system("clear"); } int main() { clrscr(); //clear output screen printf("Hello World!!!"); //print message return 0; }
Unions in C Language
A union is a special data type available in C that allows to store different data types in the same memory location. You can define a union with many members, but only one member can contain a value at any given time. Unions provide an efficient way of using the same memory location for multiple-purpose.
Defining a Union
To define a union, you must use the union statement in the same way as you did while defining a structure. The union statement defines a new data type with more than one member for your program. The format of the union statement is as follows:
union [union tag] { member definition; member definition; ... member definition; } [one or more union variables];
The union tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the union's definition, before the final semicolon, you can specify one or more union variables but it is optional. Here is the way you would define a union type named Data having three members i, f, and str:
union Data { int i; float f; char str[20]; } data;
Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. It means a single variable, i.e., same memory location, can be used to store multiple types of data. You can use any built-in or user defined data types inside a union based on your requirement.
Accessing Union Members
To access any member of a union, we use the member access operator (.). The member access operator is coded as a period between the union variable name and the union member that we wish to access. You would use the keyword union to define variables of union type.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* unions in C language */ #include <stdio.h> #include <string.h> union student { char name[20]; char subject[20]; float percentage; }; int main() { union student record1; union student record2; // assigning values to record1 union variable strcpy(record1.name, "Jack"); strcpy(record1.subject, "Red"); record1.percentage = 96.23; printf("Union record1 values example\n"); printf(" Name : %s \n", record1.name); printf(" Subject : %s \n", record1.subject); printf(" Percentage : %f \n\n", record1.percentage); // assigning values to record2 union variable printf("Union record2 values example\n"); strcpy(record2.name, "Mani"); printf(" Name : %s \n", record2.name); strcpy(record2.subject, "Physics"); printf(" Subject : %s \n", record2.subject); record2.percentage = 99.50; printf(" Percentage : %f \n", record2.percentage); return 0; }
Goto Statement in C
A goto statement in C programming language provides an unconditional jump from the 'goto' to a labeled statement in the same function. The goto statement is known as jump statement in C. As the name suggests, goto is used to transfer the program control to a predefined label. The goto statment can be used to repeat some part of the code for a particular condition. It can also be used to break the multiple loops which can't be done by using a single break statement.
Syntax for Goto Statement in C
label: //some part of the code; goto label;
Use of goto statement is highly discouraged in any programming language because it makes difficult to trace the control flow of a program, making the program hard to understand and hard to modify. Any program that uses a goto can be rewritten to avoid them.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/* transfer control of the program to the specified label by goto statement example */ // Program to calculate the sum and average of positive numbers // If the user enters a negative number, the sum and average are displayed. #include <stdio.h> int main() { const int maxInput = 100; int i; double number, average, sum = 0.0; for (i = 1; i <= maxInput; ++i) { printf("%d. Enter a number: ", i); scanf("%lf", &number); // go to jump if the user enters a negative number if (number < 0.0) { goto jump; } sum += number; } jump: average = sum / (i - 1); printf("Sum = %.2f\n", sum); printf("Average = %.2f", average); return 0; }
Assignment Operators in C
Assignment operators are used to assign the value, variable and function to another variable. Assignment operators in C are some of the C Programming Operator, which are useful to assign the values to the declared variables. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=. The following table lists the assignment operators supported by the C language:
=
Simple assignment operator. Assigns values from right side operands to left side operand
+=
Add AND assignment operator. It adds the right operand to the left operand and assign the result to the left operand.
-=
Subtract AND assignment operator. It subtracts the right operand from the left operand and assigns the result to the left operand.
*=
Multiply AND assignment operator. It multiplies the right operand with the left operand and assigns the result to the left operand.
/=
Divide AND assignment operator. It divides the left operand with the right operand and assigns the result to the left operand.
%=
Modulus AND assignment operator. It takes modulus using two operands and assigns the result to the left operand.
<<=
Left shift AND assignment operator.
>>=
Right shift AND assignment operator.
&=
Bitwise AND assignment operator.
^=
Bitwise exclusive OR and assignment operator.
|=
Bitwise inclusive OR and assignment operator.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/* assignment operators in C language */ #include <stdio.h> main() { int a = 23; int c ; c = a; printf("Line 1 - = Operator Example, Value of c = %d\n", c ); c += a; printf("Line 2 - += Operator Example, Value of c = %d\n", c ); c -= a; printf("Line 3 - -= Operator Example, Value of c = %d\n", c ); c *= a; printf("Line 4 - *= Operator Example, Value of c = %d\n", c ); c /= a; printf("Line 5 - /= Operator Example, Value of c = %d\n", c ); c = 120; c %= a; printf("Line 6 - %= Operator Example, Value of c = %d\n", c ); c <<= 2; printf("Line 7 - <<= Operator Example, Value of c = %d\n", c ); c >>= 2; printf("Line 8 - >>= Operator Example, Value of c = %d\n", c ); c &= 2; printf("Line 9 - &= Operator Example, Value of c = %d\n", c ); c ^= 2; printf("Line 10 - ^= Operator Example, Value of c = %d\n", c ); c |= 2; printf("Line 11 - |= Operator Example, Value of c = %d\n", c ); }
Nested Loop Statement in C
C supports nesting of loops in C. Nesting of loops is the feature in C that allows the looping of statements inside another loop. Any number of loops can be defined inside another loop, i.e., there is no restriction for defining any number of loops. The nesting level can be defined at n times. You can define any type of loop inside another loop; for example, you can define 'while' loop inside a 'for' loop. A loop inside another loop is called a nested loop. The depth of nested loop depends on the complexity of a problem. We can have any number of nested loops as required. Consider a nested loop where the outer loop runs n times and consists of another loop inside it. The inner loop runs m times. Then, the total number of times the inner loop runs during the program execution is n*m.
Syntax for Nested Loop Statement in C
Outer_loop { Inner_loop { // inner loop statements. } // outer loop statements. }
Outer_loop and Inner_loop are the valid loops that can be a 'for' loop, 'while' loop or 'do-while' loop.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* nested loop statement in C language */ // C Program to print all prime factors // of a number using nested loop #include <math.h> #include <stdio.h> // A function to print all prime factors of a given number n void primeFactors(int n) { // Print the number of 2s that divide n while (n % 2 == 0) { printf("%d ", 2); n = n / 2; } // n must be odd at this point. So we can skip // one element (Note i = i +2) for (int i = 3; i <= sqrt(n); i = i + 2) { // While i divides n, print i and divide n while (n % i == 0) { printf("%d ", i); n = n / i; } } // This condition is to handle the case when n // is a prime number greater than 2 if (n > 2) printf("%d ", n); } /* Driver program to test above function */ int main() { int n = 315; primeFactors(n); return 0; }
gotoxy() Function in C
The gotoxy() function places the cursor at the desired location on the screen. This means it is possible to change the cursor location on the screen using the gotoxy() function. It is basically used to print text wherever the cursor is moved.
Syntax for gotoxy() Function in C
#include <stdio.h> void gotoxy(int x, int y);
x
x-coordinate of the point
y
y-coordinate of the point where (x, y) is the position where we want to place the cursor. If you want to take your cursor on a particular coordinate on the window, then this function is made for you. What it takes from you are two parameters. The Integers should be the x and y coordinate of the console. This is pretty helpful for games and animations. The Integers should be passed when you call the function in your program.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* place cursor at a desired location on screen by gotoxy() function example */ #include <stdio.h> //to use 'gotoxy()' and 'getch()' #include <conio.h> int main() { // define the type of variables int a, b; // define the value of variables a = 50; b = 30; // change cursor position on further co-ordinates. gotoxy(a, b); // message printf("The position of cursor is changed"); // for killing the execution getch(); return 0; }
getch() Function in C
The getch() is a predefined non-standard function that is defined in conio.h header file. It is mostly used by the Dev C/C++, MS- DOS's compilers like Turbo C to hold the screen until the user passes a single value to exit from the console screen. It can also be used to read a single byte character or string from the keyboard and then print. It does not hold any parameters. It has no buffer area to store the input character in a program.
Syntax for getch() Function in C
#include <conio.h> int getch(void);
The getch() function does not accept any parameter from the user. It returns the ASCII value of the key pressed by the user as an input. We use a getch() function in a C/ C++ program to hold the output screen for some time until the user passes a key from the keyboard to exit the console screen. Using getch() function, we can hide the input character provided by the users in the ATM PIN, password, etc. • getch() method pauses the Output Console until a key is pressed. • It does not use any buffer to store the input character. • The entered character is immediately returned without waiting for the enter key. • The entered character does not show up on the console. • The getch() method can be used to accept hidden inputs like password, ATM pin numbers, etc.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* wait for any character input from keyboard by getch() function example. */ // C code to illustrate working of // getch() to accept hidden inputs #include <conio.h> #include <dos.h> // delay() #include <stdio.h> #include <string.h> void main() { // Taking the password of 8 characters char pwd[9]; int i; // To clear the screen clrscr(); printf("Enter Password: "); for (i = 0; i < 8; i++) { // Get the hidden input // using getch() method pwd[i] = getch(); // Print * to show that // a character is entered printf("*"); } pwd[i] = '\0'; printf("\n"); // Now the hidden input is stored in pwd[] // So any operation can be done on it // Here we are just printing printf("Entered password: "); for (i = 0; pwd[i] != '\0'; i++) printf("%c", pwd[i]); // Now the console will wait // for a key to be pressed getch(); }
main() Function in C
In C, the "main" function is treated the same as every function, it has a return type (and in some cases accepts inputs via parameters). The only difference is that the main function is "called" by the operating system when the user runs the program. Thus the main function is always the first code executed when a program starts. main() function is a user defined, body of the function is defined by the programmer or we can say main() is programmer/user implemented function, whose prototype is predefined in the compiler. Hence we can say that main() in c programming is user defined as well as predefined because it's prototype is predefined. main() is a system (compiler) declared function whose defined by the user, which is invoked automatically by the operating system when program is being executed. Its first function or entry point of the program from where program start executed, program's execution starts from the main. So main is an important function in c , c++ programming language.
Syntax for main() Function in C
void main() { ......... // codes start from here ......... }
void
is a keyword in C language, void means nothing, whenever we use void as a function return type then that function nothing return. here main() function no return any value. In place of void we can also use int return type of main() function, at that time main() return integer type value.
main
is a name of function which is predefined function in C library. • An operating system always calls the main() function when a programmers or users execute their programming code. • It is responsible for starting and ends of the program. • It is a universally accepted keyword in programming language and cannot change its meaning and name. • A main() function is a user-defined function in C that means we can pass parameters to the main() function according to the requirement of a program. • A main() function is used to invoke the programming code at the run time, not at the compile time of a program. • A main() function is followed by opening and closing parenthesis brackets.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* basic c program by main() function example */ #include <stdio.h> #include <conio.h> main() { printf (" It is a main() function "); int fun2(); // jump to void fun1() function printf ("\n Finally exit from the main() function. "); } void fun1() { printf (" It is a second function. "); printf (" Exit from the void fun1() function. "); } int fun2() { void fun1(); // jump to the int fun1() function printf (" It is a third function. "); printf (" Exit from the int fun2() function. "); return 0; }
If Else Statement in C
The if-else statement is used to perform two operations for a single condition. The if-else statement is an extension to the if statement using which, we can perform two different operations, i.e., one is for the correctness of that condition, and the other is for the incorrectness of the condition. Here, we must notice that if and else block cannot be executed simiulteneously. Using if-else statement is always preferable since it always invokes an otherwise case with every if condition.
Syntax for if-else Statement in C
if (test expression) { // run code if test expression is true } else { // run code if test expression is false }
If the test expression is evaluated to true, • statements inside the body of if are executed. • statements inside the body of else are skipped from execution. If the test expression is evaluated to false, • statements inside the body of else are executed • statements inside the body of if are skipped from execution.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* if else statement in C language */ // Check whether an integer is odd or even #include <stdio.h> int main() { int number; printf("Enter an integer: "); scanf("%d", &number); // True if the remainder is 0 if (number%2 == 0) { printf("%d is an even integer.",number); } else { printf("%d is an odd integer.",number); } return 0; }
#include Directive in C
#include is a way of including a standard or user-defined file in the program and is mostly written at the beginning of any C/C++ program. This directive is read by the preprocessor and orders it to insert the content of a user-defined or system header file into the following program. These files are mainly imported from an outside source into the current program. The process of importing such files that might be system-defined or user-defined is known as File Inclusion. This type of preprocessor directive tells the compiler to include a file in the source code program. Here are the two types of file that can be included using #include: • Header File or Standard files: This is a file which contains C/C++ function declarations and macro definitions to be shared between several source files. Functions like the printf(), scanf(), cout, cin and various other input-output or other standard functions are contained within different header files. So to utilise those functions, the users need to import a few header files which define the required functions. • User-defined files: These files resembles the header files, except for the fact that they are written and defined by the user itself. This saves the user from writing a particular function multiple times. Once a user-defined file is written, it can be imported anywhere in the program using the #include preprocessor.
Syntax for #include Directive in C
#include "user-defined_file"
Including using " ": When using the double quotes(" "), the preprocessor access the current directory in which the source "header_file" is located. This type is mainly used to access any header files of the user's program or user-defined files.
#include <header_file>
Including using <>: While importing file using angular brackets(<>), the the preprocessor uses a predetermined directory path to access the file. It is mainly used to access system header files located in the standard system directories.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* #include directive tells the preprocessor to insert the contents of another file into the source code at the point where the #include directive is found. */ // C program to illustrate file inclusion // <> used to import system header file #include <stdio.h> // " " used to import user-defined file #include "process.h" // main function int main() { // add function defined in process.h add(10, 20); // mult function defined in process.h multiply(10, 20); // printf defined in stdio.h printf("Process completed"); return 0; }
For Loop Statement in C
The for loop is used in the case where we need to execute some part of the code until the given condition is satisfied. The for loop is also called as a per-tested loop. It is better to use for loop if the number of iteration is known in advance. The for-loop statement is a very specialized while loop, which increases the readability of a program. It is frequently used to traverse the data structures like the array and linked list.
Syntax of For Loop Statement in C
for (initialization; condition test; increment or decrement) { //Statements to be executed repeatedly }
Step 1
First initialization happens and the counter variable gets initialized.
Step 2
In the second step the condition is checked, where the counter variable is tested for the given condition, if the condition returns true then the C statements inside the body of for loop gets executed, if the condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3
After successful execution of statements inside the body of loop, the counter variable is incremented or decremented, depending on the operation (++ or --).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* for loop statement in C language */ // Program to calculate the sum of first n natural numbers // Positive integers 1,2,3...n are known as natural numbers #include <stdio.h> int main() { int num, count, sum = 0; printf("Enter a positive integer: "); scanf("%d", &num); // for loop terminates when num is less than count for(count = 1; count <= num; ++count) { sum += count; } printf("Sum = %d", sum); return 0; }


C various file opening modes: File is opened using fopen() c function, while opening you can use any of the following mode as per the requirement. Mode "r": It is a read only mode,
Accepts the sentence and replaces lowercase characters by uppercase and vice-versa. Take an an English sentence as input and store it in the array "sentence[]". Copy the Last Letter's
C program to input elements in an array and put all even and odd elements in 2 separate array. Separate even and odd elements of a given array in 2 separate array containing...